![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:17 、訪客IP:18.116.170.100
姓名 陳彥凱(Yen-kai Chen) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 銻化物金屬-絕緣物-半導體異質接面場效電晶體之元件發展與特性研究
(Device Development and Characterization of Sb-based Metal-Insulator-Semiconductor Heterojunction Field-Effect Transistors)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 隨著積體電路須具低功率及高性能的要求,銻化物材料系列已被評估具有高潛力適合應用於高速電子元件,其中砷化銦及銻化銦鎵皆擁有III-V族半導體中高載子遷移率等材料特性。在眾多高介電係數材料之中,氧化鋁是一種非常有潛力成為高介電係數材料的候選之一,其本身具有足夠的介電係數、高能隙、高崩潰電場、良好的熱穩定性以及非晶型態的晶體結構。因此,在本論文中我們使用高介電係數材料氧化鋁作為閘極氧化層,成功發展出銻化物金屬-絕緣體-半導體異質接面場效電晶體元件,並且作了深入的分析與探討。
首先針對原子層沉積所成長的氧化鋁薄膜,進行厚度測量和表面粗糙度之物性分析以及利用橢圓儀評估光學特性,並在砷化銦基板上使用不同化學溶液作表面處理,再將其製作成電容器,利用電容-電壓、電流-電壓與崩潰電場量測,研究電容器之電性特性,進而決定最佳的氧化鋁薄膜元件適用條件。最後,將氧化鋁薄膜成長於砷化銦/銻化鋁(InAs/AlSb)和銻化銦鎵/銻化鋁(InGaSb/AlSb)磊晶結構上,製作成電晶體並研究元件的特性。InAs/AlSb n-channel MIS-HFET元件特性上,閘極長度Lg = 2 μm,其汲極飽和電流為IDSS = 371 mA/mm及轉導增益Gm = 604 mS/mm,次臨限斜率為S.S. = 137 mV/dec,電流增益截止頻率fT為10.6 GHz。InGaSb/AlSb p-channel MIS-HFET的元件特性在閘極長度Lg = 1 μm,得到最大汲極飽和電流為31 mA/mm,轉導增益為Gm = 43 mS/mm以及次臨限斜率為S.S. = 153 mV/dec。
摘要(英) Since low-power consumption and high performance are required in the integrated circuits, Sb-based materials are considered to be high potential candidates in high speed electronic device applications, due to the InAs and InGaSb showing highest carrier mobility properties among III-V compound semiconductors. Among a number of high-k dielectric materials, Al2O3 become one of the candidates for high dielectric constant materials used for most electronics. The major reasons are that Al2O3 shows a large dielectric constant, a large bandgap, a high breakdown field, a good thermal stability, and amorphous type of crystal structure. Therefore, in this thesis, the high dielectric constant material of Al2O3 had been used as gate dielectric to develope the Sb-based metal-insulator-semiconductor heterojunction field effect transistors (MIS-HFETs) with in-depth analysis and discussion.
We first analyzed physical and optical properties of the Al2O3 thin film deposited by atomic layer deposition. The physical properties analysis included film thickness, surface roughness and the optical properties by ellipsometer. The various surface treatments of InAs substrate using different chemical solutions were studied in order to investigate the properties of the InAs MOS capacitors. The electrical property characteristics included C-V, I-V and J-E measurements were characterized to obtain the optimum conditions of Al2O3 film for MIS-HFET application. Finally, we fabricated MIS-HFETs using the Al2O3 deposited by ALD as gate dielectric on the conventional InAs/AlSb and InGaSb/AlSb HFET epitaxy materials. The fabricated InAs/AlSb n-channel MIS-HFET with a gate length of 2 μm, demonstrated the maximum drain current (IDSS) of 371 mA/mm, a transconductance (Gm) of 604 mS/mm, and a subthreshold slope is 137 mV/dec, and a peak current gain cut-off frequency (fT) of 10.6 GHz. The InGaSb/AlSb p-channel MIS-HFET with 1μm gate length showed, the maximum drain current of 31 mA/mm, transconductance of 43 mS/mm, and the subthreshold slope of 153 mV/dec.
關鍵字(中) ★ 銻化物
★ 金絕半異質接面場效電晶體
★ 原子層沉積關鍵字(英) ★ Sb-based
★ MIS-HFET
★ ALD論文目次 摘要 ....................................................................................................................................... I
Abstract ............................................................................................................................... II
誌謝 ................................................................................................................................... III
目錄 .................................................................................................................................... IV
圖目錄 ............................................................................................................................... VII
表目錄 ............................................................................................................................... XII
第一章 導論 ....................................................................................................................... 1
1.1 研究動機 ................................................................................................................... 1
1.2 高介電係數材料之簡介 ........................................................................................... 4
1.3 金屬-絕緣物-半導體異質接面場效電晶體發展現況 ............................................ 7
1.4 論文架構 ................................................................................................................. 14
第二章 磊晶結構與材料物性分析 ................................................................................. 15
2.1 前言 ......................................................................................................................... 15
2.2 銻化物材料系統之磊晶結構與材料分析 ............................................................. 15
2.2.1 InAs/AlSb HFET之磊晶結構 ........................................................................ 15
2.2.2 覆蓋層為InAs/In0.5Al0.5As之InGaSb/AlSb HFET磊晶結構 ..................... 19
2.2.3 覆蓋層為InAs之InGaSb/AlSb HFET磊晶結構 ......................................... 22
2.3 結論 ......................................................................................................................... 25
第三章 高介電係數材料物性分析與電容器特性研究 ................................................. 26
3.1 前言 ......................................................................................................................... 26
3.2 原子層沉積系統 ..................................................................................................... 26
3.2.1 原子層沉積系統簡介 ..................................................................................... 26
3.2.2 ALD之成長機制及製程原理 ........................................................................ 28
3.3 高介電係數材料氧化鋁薄膜物性分析 ................................................................. 34
3.3.1 氧化鋁薄膜之折射率分析 ............................................................................. 34
V
3.3.2 氧化鋁薄膜之厚度測量 ................................................................................. 35
3.3.3 氧化鋁薄膜之表面粗糙度分析 ..................................................................... 37
3.4 金屬-絕緣物-半導體電容器之元件特性 .............................................................. 39
3.4.1 電容器製作流程 ............................................................................................. 39
3.4.2 不同化學表面清洗方式之電容器元件特性 ................................................. 41
3.4.3 快速熱退火處理對電容器電性之影響 ......................................................... 45
3.5 結論 ......................................................................................................................... 47
第四章 MIS-HFET元件發展與特性 ............................................................................ 48
4.1 前言 ......................................................................................................................... 48
4.2 MIS-HFET之製程發展 .......................................................................................... 48
4.2.1 歐姆接觸之製程發展 ..................................................................................... 48
4.2.2 MIS-HFET元件製作流程 .............................................................................. 53
4.3 氧化鋁薄膜於不同溫度沉積之InAs/AlSb MIS-HFET元件性能 ...................... 56
4.3.1 氧化鋁薄膜為200 ℃/6 nm沉積之元件特性 ............................................... 58
4.3.2 氧化鋁薄膜為250 ℃/6 nm沉積之元件特性 ............................................... 61
4.3.3 氧化鋁薄膜為300 ℃/6 nm沉積之元件特性 ............................................... 63
4.3.4 快速熱退火處理之InAs/AlSb MIS-HFET元件特性 ................................... 66
4.4 化學表面處理之InAs/AlSb MIS-HFET元件性能 .............................................. 69
4.4.1 HCl/H2O(1/5)處理之元件特性 ...................................................................... 70
4.4.2 HCl/H2O(1/10)處理之元件特性 .................................................................... 71
4.5 成長氧化鋁薄膜於InGaSb/AlSb MIS-HFET之元件性能 .................................. 74
4.5.1 覆蓋層結構為InAs/In0.5Al0.5As之元件特性 ................................................ 75
4.5.2 覆蓋層結構為InAs之元件特性 ................................................................... 77
4.6 結論 ......................................................................................................................... 79
第五章 元件討論與比較 ................................................................................................. 80
5.1 前言 ........................................................................................................................ 80
5.2 氧化鋁薄膜沉積溫度及熱退火製程對元件性能之影響 .................................... 80
5.2.1 氧化鋁薄膜沉積溫度對元件特性之影響 ..................................................... 80
5.2.2 快速熱退火製程對元件特性之影響 ............................................................. 85
VI
5.3 化學表面處理對元件性能之影響 ......................................................................... 90
5.4 覆蓋層結構與厚度對元件性能之影響 ................................................................. 95
5.5 結論 ....................................................................................................................... 100
第六章 結論與未來發展 ............................................................................................... 101
6.1 結論 ...................................................................................................................... 101
6.2 未來發展 .............................................................................................................. 102
參考文獻 ........................................................................................................................... 104
附錄1 上下電容器製作流程 .......................................................................................... 109
附錄2 MIS-HFET元件製作流程 ................................................................................... 111參考文獻 [1]. J. B. Boos, W. Kruppa, B. R. Bennet, D. Park and S. W. Kirchofer, “AlSb/InAs HEMTs for low-voltage, high-speed applications,“ IEEE Trans. Electron Devices, vol. 45, pp. 1869-1875, 1998.
[2]. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs and In1-xGaxAsyP1-y,” J. Appl. Phys., vol. 66, pp. 6030-6040, 1989.
[3]. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Lett., vol. 89, pp. 5815-5875, 2001.
[4]. C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, pp. 255-258, 1992.
[5]. C. A. Chang, R. Ludeke, L. L. Chang, L. Esaki, “Molecular-beam epitaxy (MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, no. 11, pp. 759-761, Dec. 1977.
[6]. M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima and M. kimata, “Molecular beam epitaxy of GaSb and GaSbxAs1-x,” Jpn. J. Appl. Phys., vol. 17, pp. 2091-2096, 1978.
[7]. R. Ludeke, “Electronic properties of (100) surfaces of GaSb, InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, pp. 304-314, 1978.
[8]. R. Tsai, M. Barsky, J. B. Boss, J. Lee, N. A. Papanicolaou, R.Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for Low-Power, High-Speed Electronics,” Proc. IEEE GaAs Dig., pp. 294-297, 2003.
[9]. R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, pp. 256-268, 1974.
[10]. R. M. Wallace and G. D. Wilk, “Exploring the limits of gate dielectric scaling,”
105
Semicond. Int., vol. 153, 2001.
[11]. S. M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, Third Edition, pp.297-298, 2006.
[12]. G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-k dielectric: Current status and materials properties considerations” J. Appl. Phys., vol. 89, pp. 5243-5275, 2001.
[13]. D.G.Schlom and J.H Haeni, “A thermodynamic approach to selecting alternative gate dielectric,” MRS Bulletin, vol. 27, pp. 198-204, 2002.
[14]. P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, ”GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition,” IEEE Electron Device Letters, vol. 24, pp. 209-211, 2003.
[15]. G. Tuttle, H. Kroemer, J. H. English, “Electron concentrations and mobilities in AlSb/InAs/AlSb quantum wells,” J. Appl. Phys., vol. 65, pp. 5239-5242, 1989.
[16]. G. Tuttle, H. Kroemer, J. H. English, “Effects of interface layer sequencing on the transport-properties of InAs/AlSb quantum wells evidence for antisite donors at the InAs/AlSb interface,” J. Appl. Phys., vol.67, pp. 3032-3037, 1990.
[17]. C. R. Bolognesi, H. Kroemer, J. H. English, “Well width dependence of electrontransport in molecular-beam epitaxially grown InAs/AlSb quantum-wells,” J. Vac. Sci Technol. B, vol. 10, pp. 877-879, 1992.
[18]. R. Venkatasubramanian, D. L. Dorsey, K. Mahalingam, ”Heuristic rules for group IV dopant site selection in III–V compounds,” J. Cryst. Growth, vol. 175, pp. 224-228, May 1997.
[19]. B. R. Bennett, R. Magno, and N. Papanicolaou, “Controlled n-type doping of antimonides and arsenides using GaTe,” J. Cryst. Growth, vol. 251, no. 1-4, pp. 532-537, Apr. 2003.
[20]. B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,“ Solid-State Electron., vol. 49, pp. 1875-1895, 2005.
106
[21]. L. F. Luo, K. F. Longenbach and W. I. Wang, “p-channel modulation-doped field-effect transistors based on AlSb0.9As0.1/GaSb,” IEEE Electron Device Lett., vol. 11, pp. 567-569, 1990.
[22]. Y. Xuan, Y. Q. Wu, and P. D. Ye, “High-Performance Inversion-Type Enhancement-Mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm,” IEEE Electron Dev. Lett., vol. 29, pp. 294-296, 2008.
[23]. S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding* and R. Chau, “85nm Gate Length Enhancement and Depletion mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications”, Electron Devices Meeting, pp. 763-766, 2005
[24]. Aneesh Nainani, Ze Yuan, Tejas Krishnamohan, Brian R. Bennett, J. Brad Boos, Matthew Reason, Mario G. Ancona, Yoshio Nishi, and Krishna C. Saraswat, “InxGa1-xSb channel p-metal-oxide-semiconductor field effect transistors:Effect of strain and heterostructure design,” J. Appl. Phys., vol. 110, pp. 014 503-1–014 503-9, 2011.
[25]. I. H. Tan, G. L. Snider, L. D. Chang and E. L. Hu, “A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh,” J. Appl. Phys., vol. 68, pp. 4071-4076, 1990.
[26]. H. K. Lin, “The Design, Growth, and Characterization of Antimonide-Based Composite-Channel Heterostructure Field-Effect Transistors,” Ph.D. dissertation, UC Santa Barbara, 2004.
[27]. B. R. Bennett, S. A. Khan, J. B. BOOS, N. A. Papanicolaou, and V. V. Kuznetsov, “AlGaSb Buffer Layers for Sb-Based Transistors,” J. Elec. Mate., vol. 39, pp. 2196-2202, 2010.
[28]. K. Saito, Y. Yamamoto, A. Matsuda, S. Izumi, T. Uchino, K. Ishida, K. Takahashi, “Atomic layer growth and characterization of ZnO thin films,” Phys. Stat. Sol (b), vol. 229, pp. 925-929, 2002.
[29]. Cambridge NanoTech, atomic layer deposition, ALD Tutorial, pp. 1-23, 2012.
107
Available online: http://www.cambridgenanotech.com/
[30]. Picsun, Atomic Layer Deposition, introduction to Atomic Layer Deposition, pp. 1-29, 2012. Available online: http://www.picosun.com/
[31]. M. Leskela and M. Ritala, “Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges,” Angew. Chem. Int. Ed., vol. 42, pp. 5548-5554, 2003.
[32]. 陳宥儒, “原子層沉積氮摻雜二氧化鈦薄膜之光電化學特性研究,” 碩士論文, 私立南台科技大學, 2009.
[33]. M. Putkonen, "Development of low-temperature deposition processes by atomic layer epitaxy for binary and ternary oxide thin films," Helsinki University of Technology, Espoo, Finland, 2002.
[34]. 鄭崇銘, “氧化鉿-氧化鈮閘極介電薄膜之特性研究,” 碩士論文, 國立成功大學, 2007.
[35]. 范大偉, “砷化銦/銻化鋁金屬-氧化物-半導體高電子遷移率電晶體之發展,” 碩士論文, 國立中央大學, 2009.
[36]. J. A. Robinson, S. E. Mohney, J. B. Boos, B. P. Tinkham and B. R. Bennett, “Pd/Pt/Au ohmic contact for AlSb/InAs0.7Sb0.3 heterostructures,” Solild State Electronics, vol. 50, pp. 429-432, 2006.
[37]. J. S. Yu, S. H. Kim and T. I. Kim, “PtTiPtAu and PdTiPtAu ohmic contacts to p-InGaAs,” in ISCS int. conf., pp. 175-178, 1997.
[38]. E. J. Miller, X. Z. Dang and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” J. Appl. Phys., vol. 88, pp. 5951-5958, 2000.
[39]. W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse. “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 80, pp. 3207-3209, 2002.
108
[40]. X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutros and J. M. Redwing, “Fabrication and characterisation of enhanced barrier AlGaN/GaN HFET,” IEEE Electron Lett., vol. 35, pp. 602-603, 1999.指導教授 辛裕明(Yue-ming Hsin) 審核日期 2012-9-19 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare