台灣聯合大學系統101學年度碩士班招生考試命題紙 共 2 頁第 1 頁

科目: 工程數學 D(3006)

校系所組:中央大學電機工程學系(系統與生醫組)

交通大學電子研究所(甲組)

交通大學電控工程研究所(甲組、乙組)

交通大學生醫工程研究所(乙組)

1. (8%) Let
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 9 & 12 \\ 0 & a & b \end{bmatrix}$$
.

- (a) (4%) Suppose a = 0 and b = 4, find A^{-1} .
- (b) (4%) Find all nonzero values of a and b so that the nullspace of A has infinitely many vectors. Justify your answer.
- 2. (15%) Are the following true (T) or false (F)? For each of your answers give a brief explanation or a counterexample.

- (b) (3%) If A and B are both n by n matrices, then $(A+B)^2 = A^2 + 2AB + B^2$.
- (c) (3%) Suppose A is an m by n matrix with rank r, and b is a column vector with m entries. If m > r and n > r, then the equation Ax = b has infinitely many solutions for some b and exactly one solution for other b.
- (d) (3%) The maximum number of distinct entries of a square n by n symmetric matrix is n^2 .
- (e) (3%) If A is similar to B, then A^3 is similar to B^3 .

3. (10%) Let
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$$
.

- (a) (4%) Find an orthonormal basis for the column space of A using the Gram-Schmidt procedure.
- (b) (3%) Let P_1 be the projection matrix that projects \mathbf{R}^4 onto the subspace spanned by the first column of A, and P_2 be the projection matrix that projects \mathbf{R}^4 onto the column space of A. Find the product P_1P_2 .
- (c) (3%) Prove that all projection matrices are symmetric. Please explain each of your steps in detail.
- 4. (4%) Consider the basis $\mathbf{S} = \{v_1, v_2, v_3\}$ for \mathbf{R}^3 , where $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$, and $v_3 = (1, 0, 0)$. Suppose the linear transformation $T: \mathbf{R}^3 \to \mathbf{R}^3$ is such that

$$T(v_1) = (1, 2, 3), T(v_2) = (4, 5, 6), T(v_3) = (7, 8, 9).$$

Find a formula for T(x), where $x = (x_1, x_2, x_3)$, and use that formula to find T(v) for v = (1, 2, 1).

- 5. (13%)
 - (a) (2%) Find the eigenvalues of $A = \begin{bmatrix} 1 & -12 \\ -12 & -6 \end{bmatrix}$.
 - (b) (2%) Find a matrix P that diagonalizes A in (a).
 - (c) (3%) Show that $B = \begin{bmatrix} -11 & -12 \\ -7 & 6 \end{bmatrix}$ is similar to A in (a).
 - (d) (3%) Let $C = \begin{bmatrix} a & 6 & 0 \\ 6 & a & 8 \\ 0 & 8 & a \end{bmatrix}$. Find the condition(s) on the number a so that the matrix C has only positive eigenvalues.
 - (e) (3%) Show that the matrix $D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}$ is not diagonalizable.

多等用

注:背面有試題

科目: 工程數學 D(3006)

校系所組:中央大學電機工程學系(系統與生醫組) 交通大學電子研究所(甲組)

交通大學電控工程研究所(甲組、乙組)

交通大學生醫工程研究所(乙組)

6. (12%) Consider the following initial-value problem

$$y'' + ay' + by = f(x), y(0) = c, y'(0) = d$$

where a, b, c, and d are (real) constants.

- (a) (4%) It is known that the solution is $y(x) = \sin 2x$ when $f(x) = -3\sin 2x$. Determine the values of the constants a, b, c, and d.
- (b) (8%) Find the solution y(x), for $-\frac{\pi}{2} < x < \frac{\pi}{2}$, when $f(x) = \tan x$.
- 7. (13%)
 - (a) (6%) Determine the Laplace transform F(s) of the function f defined as follows

$$f(t) = \begin{cases} 1, & 0 \le t < 2; \\ -3, & 2 \le t < 3; \\ t^2, & t \ge 3. \end{cases}$$

(b) (7%) Let h be the convolution of the functions w and f, i.e.,

$$h(t) = \int_{-\infty}^{\infty} w(t - \tau) f(\tau) d\tau$$

where $w: \mathbf{R} \to \mathbf{R}$ and $f: \mathbf{R} \to \mathbf{R}$ are defined as

$$w(t) = \begin{cases} 1, & 0 \le t < 1; \\ 0, & \text{otherwise.} \end{cases} \quad f(t) = \begin{cases} 2t, & 0 \le t < 1; \\ 4 - 2t, & 1 \le t < 2; \\ 0, & \text{otherwise.} \end{cases}$$

Compute h(t) for $1 \le t < 2$.

8. (12%) Consider the following differential equation

$$\frac{dy_1}{dt} = -2y_1 + y_2$$

$$\frac{dy_2}{dt} = y_1 - 2y_2$$

- (a) (8%) Determine the set of all solutions to the above differential equation.
- (b) (4%) Suppose $y_1(0) = 0$ and $y_2(1) = 1$. Determine $y_1(t)$ and $y_2(t)$ for $t \ge 0$.
- 9. (13%) Consider the differential equation

$$\frac{dy_1}{dt} = -y_2 - y_1(y_1^2 + y_2^2)$$

$$\frac{dy_2}{dt} = y_1 - y_2(y_1^2 + y_2^2)$$

- (a) (6%) Convert the equations into a set of differential equations in r and θ , where (y_1, y_2) and (r, θ) are related by $y_1 = r \cos \theta$ and $y_2 = r \sin \theta$.
- (b) (7%) Determine $y_1(t)$ and $y_2(t)$ for $t \ge 0$, given the conditions $y_1(0) = 0, y_2(0) = 1$.

