台灣聯合大學系統93學年度學士班轉學生考試命題紙

科目 微積分 類組別 A-2,A-3,A-4,A-5,B-5,B-6 共 2 頁第 1 頁 *請在試卷答案卷(卡)內作答

一.填充題.共60分.(只需按標碼甲,乙,丙…等填出答案即可)

1. (7分)

Let f(x) be a differentiable function on \mathbb{R} satisfying

$$f(x^2) = 1 + \int_0^{x^2} f(y)(1 - \tan y) dy$$

for all $x \in \mathbb{R}$. Then $f(\pi) = \mathbb{H}$.

2. (7分)

Let L be the line tangent to the polar curve $r(\theta) = \frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}$ at $\theta = 0$. The equation of L in x and y is Z.

3. (7分)

Evaluate the improper integral $\int_0^\infty \frac{dx}{(x+1)[x^2+(x+1)^2]}$ by transforming it into a definite integral of the form $\int_0^1 \frac{ay+b}{\alpha y^2+\beta y+\gamma} dy$ via an appropriate 1-1 onto differentiable function $[0,\infty) \stackrel{y=f(x)}{\longrightarrow} [0,1)$. Answer: $\overline{\not h}$.

4. (7分)

Evaluate $\int_0^{\frac{\pi}{3}} \frac{1}{\sin x - \cos x - 1} dx = \underline{\mathsf{T}}$.

5. (8分)

Let
$$p(x) = x^6 + 2x^5 - x + 1$$
. Find $\lim_{x \to \infty} \{(p(x))^{1/6} - x\} =$

6. (8分)

Evaluate $\int \int_{\Omega} xy dx dy$, where Ω is the region in the first quadrant bounded by the curves: $x^2 + y^2 = 4$, $x^2 + y^2 = 9$, $x^2 - y^2 = 1$, $x^2 - y^2 = 4$. Answer: \Box .

7. (8分)

Evaluate the line integral $\int_C (x^2 + 6xy - 2y^2) dx + (3x^2 - 4xy + 2y) dy$ along the path $C: y = \tan x$ from x = 0 to $x = \frac{\pi}{4}$. Answer: \cancel{E} .

8. (8分)

Find the volume of the solid T bounded above by the plane z=2y and below by the paraboloid $z=x^2+y^2$. Answer: \rightleftarrows .

台灣聯合大學系統93學年度學士班轉學生考試命題紙

科目 微積分 類組別 A-2,A-3,A-4,A-5,B-5,B-6 共 2 頁第 2 頁 *請在試卷答案卷(卡)內作答

- 二.計算証明題.共40分(需寫出計算及証明過程,否則不予計分)
- 1. (10分)

Find

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{n}{k^2 + n^2} \right).$$

2. (10分)

Let $0.a_1a_2a_3a_4\cdots$ be the decimal expansion of the rational number $\frac{5}{7}$. Let $b_k=a_{2^k}, k=1,2,\cdots$. The decimal $0.b_1b_2b_3b_4\cdots$ also represents a rational number $\frac{a}{b}$. Find $\frac{a}{b}$.

3. (10分)

Find the shortest distance from the point (1,2,0) to the elliptic cone $z = \sqrt{x^2 + 2y^2}$.

4. (10分)

Evaluate the surface integral $\int \int_S (x^4 + y^4 + z^4) d\sigma$, where $d\sigma$ is the surface element and $S = \{(x, y, z): x^2 + y^2 + z^2 = 1\}$.