博碩士論文 992906001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.216.219.130
姓名 邱奕昌(Yi-chang Chiou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 均溫板等效模型建立與熱特性量測
(A simple model for evaluating the thermal properties of vapor chamber)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用質量流率計算出均溫板蒸氣室任意空間分佈之等效熱傳係數,利用紅外線穩態熱阻量測實驗與限元素分析法找出多孔性結構的等效熱傳係數,由實驗與模擬之驗證與分析,我們成功建立均溫板等效熱傳模型,且找出均溫板熱阻與質量流率的相關性,並可做為評估均溫板優劣參數。接著針對不同操作條件下的均溫板進行分析與比較,並找出最佳的操作條件。
摘要(英) We success fully built an effective model that neatly describes heat-conducting behavior of vapor chamber, by obtaining the equivalent heat transfer coefficient of vapor space and the equivalent heat transfer of wick. and then we discovered the relationship between thermal resistance and mass flow rate of vapor chamber. Once the relation has found, we can treat mass flow rate as a factor of heat-conducting ability for every vapor chamber. Futhermore, we analyzed and compared different scenarios, and found the best operating condition of vapor chamber.
關鍵字(中) ★ 均溫板
★ 發光二極體
★ 熱阻
關鍵字(英) ★ Vapor chamber
★ Light emitting diodes
★ Thermal resistance
論文目次 目錄
摘要 I
ABSTRACT II
致謝 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 5
第二章 基本原理 8
2.1 引言 8
2.2 LED基本原理 8
2.3 基本熱傳原理 12
2.3.1 熱傳導 12
2.3.2 熱對流 15
2.3.3 熱輻射 16
2.3.4 熱阻 18
2.4 均溫板工作原理 19
2.5 性能極限 22
第三章 均溫板參數分析與等效模型建立 24
3.1引言 24
3.2質量流率 25
3.3 均溫板的等效熱傳係數 30
3.4 均溫板模型建立 33
3.4.1有限元素分析簡介 33
3.4.2 均溫板的幾何結構及材料參數、邊界條件設定 34
第四章 實驗驗證與分析 37
4.1 引言 37
4.2 實驗架構 37
4.3 實驗與模型驗證 40
4.4 評估參數 45
4.5 特性分析與討論 47
4.6 均溫板散熱應用 53
第五章 結論 56
參考資料 57
參考文獻 [1]H. J. Round, “A note on carborundum,” Electrical World 49, 309-310 (1907).
[2]N.Holonyak and S.F.Bevacqua, “Coherent(visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[3]C. J. Nuese, J. J. Tietjen, J. J. Gannon, H. F. Gossenberger, “Optimization of Electroluminescent Efficiencies for Vapor-Grown GaAs1−xPx Diodes,” J. Electrochem. Soc. 116, 248-253 (1969).
[4]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys. 31, 139-142 (1992).
[5]S. Nakamura, M. Senoh, and N. Iwasa, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,” Jpn. J. Appl. Phys. 34, 797-799 (1995).
[6]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, DEC. 7,1999.
[7]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diode,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[8]孫慶成,「螢光粉模型與LED 光色的控制」, 2010 LED 固態照明研討會,國立中央大學,中華民國九十七年。
[9]F. Wall, P. S. Martin, and G. Harbers, “High power LED package Requirment,” Proc. SPIE 5187, 85-92 (2004).
[10]J. Li, L. Zhang, A. Wang, C. Zhao, and L. Lin, “Effect of junction temperature on the performance of high-power white LEDs ,” Proc. SPIE 7852, (2010).
[11]R.S. Gaugler, “Heat Transfer Device,” U.S. Patent NO.2350348 (1944).
[12]G. M. Grover, T. P. Cotter, and G. F. Erickson, “Structures of Very High Thermal Conductance,” J. Appl. Phys. 35, 1990-1991 (1964).
[13]T. P. Cotter, “Theory of Heat Pipes,” Report LA-3246-MS, Los Alamos Scientific Laboratory of the University of California, 1-37 (1965).
[14]J. Wei, A. Cha, and D. Copeland, “Measurement of vapor Chamber Performance,” IEEE SEMI-THERM Symposium, 191-194 (2003).
[15]I. Sauciuc, G. Chrysler, R. Mahajan, and R. Prasher, “Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals??,” IEEE Transactions on Components and Packaging technologies 25, 621-628 (2002).
[16]Chang, Won Soon and Colwell, “Mathematical modeling of thetransient operating characteristic of a low-temperature heat pipe, ” Numerical Heat Transfer 8, 169-186 (1985).
[17]Faghri, Amir, Heat pipe science and technology, Taylor & Francis, 1995.
[18]Zuo, Z. J. and Faghri, “A network thermodynamic analysis of the heat pipe,” Int. J. Heat Mass Transfer 41, 1473-1484 (1998).
[19]Zhu and Vafai, “Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe : a Three-dimensional Analytical and Numerical Investigation,” Int. J. Heat Mass Transfer 41, 159-174 (1998).
[20]Vadakkan, Unnikrishnan, Garimella, Suresh and Murthy, “Transport in Flat Heat Pipes at High Heat Fluxes from Multiple Discrete Sources,” J. Heat Transfer 126, 347-354 (2004).
[21]Wei, X. and Sikaa, “Modeling of Vapor Chamber as Heat Spreading Devices,” IEEE, 578–585 (2006).
[22]D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, New York, 2003.
[23]S. Nakamura, T. Mukai, and M. Senoh, “High‐brightness InGaN/AlGaN double‐heterostructure blue‐green‐light‐emitting diodes,” J. Appl. Phys. 76, 81-89 (1994).
[24]D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room Temperature Excitonic Nonlinear Absorption and Refraction in GaAs/AIGaAs Multiple Quantum Well Structures,” IEEE J. Quantum Electron. 20, 265-275 (1984).
[25]J. J. Wierer et al., “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379–3381 (2001).
[26]C. J. Nuese, J. J. Tietjen, J. J. Gannon, and H. F. Gossenberger, “Optimization of electroluminescent efficiencies for vapor-grown GaAsP diodes,” J. Electrochem. Soc. 116, 248-253 (1969).
[27]H. C. Wang, Y. K. Su, Y. H. Chung, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a current-blocking structure,” Solid-State Electronics 49, 37-41 (2005).
[28]C. Kittel, and H Kroemer, Thermal physics, W. H. Freeman and Company, San Francisco, 1980.
[29]J. P. Holman, Heat Transfer, McGraw-Hill, New York, 1996.
[30]R. Siegel, and J. R. Howell, Thermal radiation heat transfer, Hemisphere Pub. Corp, Washington, 1981.
[31]Chi, S. W., Heat Pipe Theory and Practice, McGraw-Hill, Washington, New Your, 1976
[32]陳憬憲,穩態紅外線LED封裝熱阻量測,國立中央大學光電科學與工程學系碩士論文,中華民國九十九年。
[33]CREE., http://www.cree.com/.
指導教授 鐘德元、孫慶成
(Te-yuan Chung、Ching-cherng Sun)
審核日期 2013-2-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明