參考文獻 |
[1] P. K. Shukla and A. A. Mamun. Introduction to Dusty Plasma Physics. The
Institute of Physics, London, 2002.
[2] P. K. Shukla and B. Eliasson. Colloquium: Fundamentals of dust-plasma
interactions. Rev. Mod. Phys., 81:25, 2009.
[3] N. N. Rao, P. K. Shukla, and M. Y. Yu. Dust-acoustic waves in dusty
plasmas. Planet. Space Sci., 338:543, 1990.
[4] V. E. Fortov, A. D. Usachev, A. V. Zobnin, V. I. Molotkov, and O. F.
Petrov. Dust-acoustic wave instability at the diuse edge of radio frequency
inductive low-pressure gas discharge plasma. Phys. Plasmas, 10:1199, 2003.
[5] P. Kaw and R. Singh. Collisional instabilities in a dusty plasma with recombination
and ion-drift eects. Phys. Rev. Lett., 79:423, 1997.
[6] A. Piel, M. Klindworth, O. Arp, A. Melzer, and M. Wolter. Obliquely
propagating dust-density plasma waves in the presence of an ion beam.
Phys. Rev. Lett., 97:205009, 2006.
[7] A. A. Mamun and P. K. Shukla. Streaming instabilities in a collisional dusty
plasma. Phys. Plasmas, 7:4412, 2000.
[8] A. Barkan, R. L. Merlino, and N. D’Angelo. Laboratory observation of the
dust acoustic wave mode. Phys. Plasmas, 2:3563, 1995.
[9] C. Thompson, A. Barkan, N. D’Angelo, and R. L. Merlino. Dust acoustic
waves in a direct current glow discharge. Phys. Plasmas, 4:2331, 1997.
[10] M. Schwabe, M. Rubin-Zuzic, S. Zhdanov, H. M. Thomas, and G. E. Morll.
Highly resolved self-excited density waves in a complex plasma. Phys. Rev.
Lett., 99:095002, 2007.
[11] Chen-Ting Liao, Lee-Wen Teng, Chen-Yu Tsai, Chong-Wai Io, and Lin I.
Lagrangian-eulerian micromotion and wave heating in nonlinear self-excited
dust-acoustic waves. Phys. Rev. Lett., 100:185004, 2008.
[12] Lee-Wen Teng, Mei-Chu Chang, Yu-Ping Tseng, and Lin I. Wave-particle
dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev.
Lett., 103:245005, 2009.
[13] R. L. Merlino, J. R. Heinrich, S.-H. Hyun, and J. K. Meyer. Nonlinear dust
acoustic waves and shocks. Phys. Plasmas, 19:057301, 2012.
[14] J. Heinrich, S.-H. Kim, and R. L. Merlino. Laboratory observations of selfexcited
dust acoustic shocks. Phys. Rev. Lett., 103:115002, 2009.
[15] P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw. Experimental study
of nonlinear dust acoustic solitary waves in a dusty plasma. Phys. Rev. Lett.,
101:065006, 2008.
[16] P. K. Shukla and B. Eliasson. Nonlinear dynamics of large-amplitude dust
acoustic shocks and solitary pulses in dusty plasmas. Phys. Rev. E, 86:
046402, 2012.
[17] W. D. Suranga Ruhunusiri and J. Goree. Synchronization mechanism and
arnold tongues for dust density waves. Phys. Rev. E, 85:046401, 2012.
[18] K. O. Menzel, O. Arp, and A. Piel. Spatial frequency clustering in nonlinear
dust-density waves. Phys. Rev. Lett., 104:235002, 2010.
[19] J. Pramanik, B.M. Veeresha, G. Prasad, A. Sen, and P.K. Kaw. Experimental
observation of dust-acoustic wave turbulence. Phys. Lett. A, 312:84,
2003.
[20] Ya-Yi Tsai, Mei-Chu Chang, and Lin I. Observation of multifractal intermittent
dust-acoustic-wave turbulence. Phys. Rev. E, 86:045402, 2012.
[21] Petr Denissenko, Sergei Lukaschuk, and Sergey Nazarenko. Gravity wave
turbulence in a laboratory
ume. Phys. Rev. Lett., 99:014501, 2007.
[22] E. Falcon, C. Laroche, and S. Fauve. Observation of gravity-capillary wave
turbulence. Phys. Rev. Lett., 98:094503, 2007.
[23] E. Falcon, S. Fauve, and C. Laroche. Observation of intermittency in wave
turbulence. Phys. Rev. Lett., 98:154501, 2007.
[24] Arezki Boudaoud, Olivier Cadot, B. Odille, and Cyril Touze. Observation
of wave turbulence in vibrating plates. Phys. Rev. Lett., 100:234504, 2008.
[25] Nicolas Mordant. Are there waves in elastic wave turbulence? Phys. Rev.
Lett., 100:234505, 2008.
[26] A. N. Ganshin, V. B. Emov, G. V. Kolmakov, L. P. Mezhov-Deglin, and
P. V. E. McClintock. Observation of an inverse energy cascade in developed
acoustic turbulence in super
uid helium. Phys. Rev. Lett., 101:065303, 2008.
[27] G. V. Kolmakov, V. B. Emov, A. N. Ganshin, P. V. E. McClintock, and L. P.
Mezhov-Deglin. Formation of a direct kolmogorov-like cascade of secondsound
waves in he ii. Phys. Rev. Lett., 97:155301, 2006.
[28] G. Y. Antar, S. I. Krasheninnikov, P. Devynck, R. P. Doerner, E. M. Hollmann,
J. A. Boedo, S. C. Luckhardt, and R. W. Conn. Experimental evidence
of intermittent convection in the edge of magnetic connement devices.
Phys. Rev. Lett., 87:065001, 2001.
[29] S. Futatani, S. Benkadda, Y. Nakamura, and K. Kondo. Multiscaling dynamics
of impurity transport in drift-wave turbulence. Phys. Rev. Lett., 100:
025005, 2008.
[30] V. E. Zakharov, V. S. Lvov, and G. Falkovich. Kolmogorov Spectra of Tur-
bulence I. Springer, Berlin, 1992.
[31] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium.
Rev. Mod. Phys., 65:851, 1993.
[32] Igor S. Aranson and Lorenz Kramer. The world of the complex ginzburglandau
equation. Rev. Mod. Phys., 74:99, 2002.
[33] Vladimir Garcia-Morales and Katharina Krischer. The complex ginzburglandau
equation: an introduction. Contemporary Physics, 53:79, 2012k.
[34] Francis F. Chen. Introduction to Plasma Physics. Plenum Press, New York,
1974.
[35] Brian Chapman. Glow Discharge Processes. John Wiley & Sons, Inc., 1980.
[36] V. Nosenko, S. K. Zhdanov, S.-H. Kim, J. Heinrich, R. L. Merlino, and
G. E. Morll. Measurements of the power spectrum and dispersion relation
of self-excited dust acoustic waves. EPL, 88:65001, 2009.
[37] T. M. Flanagan and J. Goree. Development of nonlinearity in a growing
self-excited dust-density wave. Phys. Plasmas, 18:013705, 2011.
[38] W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla. Dust-acoustic
rogue waves in a nonextensive plasma. Phys. Rev. E, 85:066402, 2011.
[39] K. O. Menzel, O. Arp, and A. Piel. Frequency clusters and defect structures
in nonlinear dust-density waves under microgravity conditions. Phys. Rev.
E, 83:016402, 2011.
[40] K. O. Menzel, O. Arp, and A. Piel. Chain of coupled van der pol oscillators
as model system for density waves in dusty plasmas. Phys. Rev. E, 84:
016405, 2011.
[41] Iris Pilch, Torben Reichstein, and Alexander Piel. Synchronization of dust
density waves in anodic plasmas. Phys. Plasmas, 16:123709, 2009.
[42] Mei-Chu Chang, Lee-Wen Teng, and Lin I. Micro-origin of no-trough trapping
in self-excited nonlinear dust acoustic waves. Phys. Rev. E, 85:046410,
2012.
[43] Qi Ouyang, Harry L. Swinney, and Ge Li. Transition from spirals to defectmediated
turbulence driven by a doppler instability. Phys. Rev. Lett., 84:
1047, 2000.
[44] Chun Qiao, Hongli Wang, and Qi Ouyang. Defect-mediated turbulence in
the belousov-zhabotinsky reaction. Phys. Rev. E, 79:016212, 2009.
[45] Qi Ouyang and J.-M. Flesselles. Transition from spirals to defect turbulence
driven by a convectie instability. Nature, 379:143, 1996r.
[46] Eberhard Bodenschatz, Werner Pesch, and Guenter Ahlers. Recent developments
in rayleigh-bEnard convection. Annu. Rev. Fluid Mech., 32:709,
2000.
[47] V. Croquette, M. Mory, and F. Schosseler. Rayleigh-benard convective structures
in a cylindrical container. J. Physique, 44:293, 1983.
[48] V. Croquette, P. Le Gal, and A. Pocheau. Spatial features of the transition
to chaos in an extended system. Physica Scripta., T13:153, 1986.
[49] Steen Rasenat, Victor Steinberg, and Ingo Rehberg. Experimental studies
of defect dynamics and interaction in electrohydrodynamic convection. Phys.
Rev. A, 42:2998, 1990.
[50] Ingo Rehberg, Steven Rasenat, and Victor Steinberg. Traveling waves and
defect-initiated turbulence in electroconvecting nematics. Phys. Rev. Lett.,
62:756, 1989.
[51] N. B. Tullaro, R. Ramshankar, and J. P. Gollub. Order-disorder transition
in capillary ripples. Phys. Rev. Lett., 62:422, 1989.
[52] Itamar Shani, Gil Cohen, and Jay Fineberg. Localized instability on the
route to disorder in faraday waves. Phys. Rev. Lett., 104:184507, 2010.
[53] H. Arbell and J. Fineberg. Temporally harmonic oscillons in newtonian fuids. Phys. Rev. Lett., 85:756, 2000.
[54] P. Coullet, L. Gil, and J. Lega. Defect-mediated turbulence. Phys. Rev.
Lett., 62:1619, 1989.
[55] Alan C. Newell, Thierry Passot, and Joceline Lega. Order parameter equations
for patterns. Annu. Rev. Fluid Mech., 25:399, 1993.
[56] Hugues Chate. Spatiotemporal intermittency regimes of the one-dimensional
complex ginzburg-landau equation. Nonlinearity, 7:185, 1994.
[57] Martin van Hecke. Building blocks of spatiotemporal intermittency. Phys.
Rev. Lett., 80:1896, 1998.
[58] Sergio Alonso, Francesc Sagues, and Alexander S. Mikhailov. Taming winfree
turbulence of scroll waves in excitable media. Science, 299:1722, 2003.
[59] A. T. Winfree, S. Caudle, G. Chen, P. McGuire, and Z. Szilagyi. Quantitative
optical tomography of chemical waves and their organizing centers.
Chaos, 6:617, 1996.
[60] M. Vinson, S. Mironov, S. Mulvey, and A. Pertsov. Control of spatial orientation
and lifetime of scroll rings in excitable media. Nature, 386:477,
1997.
[61] Dagmar Krefting and Carsten Beta. Theoretical analysis of defect-mediated
turbulence in a catalytic surface reaction. Phys. Rev. E, 81:036209, 2010.
[62] Hongli Wang. Statistics of defect-mediated turbulence inuenced by noise.
Phy. Rev. Lett., 93:154101, 2004.
[63] Karen E. Daniels, Christian Beck, and Eberhard Bodenschatz. Defect turbulence
and generalized statistical mechanics. Physica D, 193:208, 2004.
[64] R.H. Clayton, E.A. Zhuchkova, and A.V. Panlov. Phase singularities and
laments: Simplifying complexity in computational models of ventricular brillation.
Progress in Biophysics and Molecular Biology, 90:378, 2006.
[65] Zhilin Qu, Jong Kil, Fagen Xie, Alan Garnkel, and James N. Weiss. Scroll
wave dynamics in a three-dimensional cardiac tissue model: Roles of restitution,
thickness, and ber rotation. Biophysical Journal, 78:2761, 2000.
[66] J. Davidsen, Meng Zhan, and Raymond Kapral. Filament-induced surface
spiral turbulence in three-dimensional excitable media. Phys. Rev. Lett.,
101:208302, 2008.
[67] J. C. Reid, H. Chate, and J. Davidsen. Filament turbulence in oscillatory
media. EPL, 94:68003, 2011.
[68] Mei-Chu Chang, Yu-Ping Tseng, and Lin I. Projectile channeling in chain
bundle dusty plasma liquids: Wave excitation and projectile-wave interaction.
Phys. Plasmas, 18:033704, 2011. |