博碩士論文 972402002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.17.76.136
姓名 張美菊(Mei-Chu Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 三維電漿微粒聲波中之缺陷介導紊波
(Defect-mediated turbulence in three-dimensional traveling dust acoustic wave)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微粒電漿系統由微米大小的顆粒在弱游離的電漿中所組成。透過微粒的慣性力、屏蔽效應下之庫倫作用力、背景電漿壓力與離子風之交互作用,此微粒電漿系統會自發的產生向下傳播的三維電漿微粒聲波,或稱電漿微粒疏密波。藉由非線性之聲波場與微米粒子的交互作用,電漿微粒聲波場影響微米粒子的運動,而受影響之微米粒子震盪伴隨著聲波密度的變化進而影響微粒聲波在時空中的傳播。透過高速數位攝影技術,藉由直接記錄微米粒子影像而監測聲波場的密度變化,無論從電漿角度或是從非線性角度,微粒聲波提供一個好的觀測平台以研究波動現象。例如,電漿微粒聲波紊流態展現不同時間尺度下之,不同的幕次尺度率與多重碎形特性。然而,電漿微粒聲波如何從規則週期性的震盪轉變至紊流態,卻沒有被探討。
在此研究中,藉由精細的調控系統參數,並監測疏密波形在水平面與縱向面之時空中的變化,我們首度觀察到介於三維電漿微粒規則聲波與微粒紊流聲波之間,存在著缺陷介導紊波。隨著聲波從規律的週期性傳播轉變為缺陷介導紊波,其時間中功率頻譜的分布從窄的諧波往兩邊擴散。發現缺陷介導紊波的密度在時間上的變化經歷振幅與相位的調製,是由於聲波在空間中的波形起伏。聲波在縱向面之起伏則產生缺陷,並藉由波峰之彎曲、斷裂和重聯之行為影響缺陷的動力學行為。聲波在水平面之起伏產生高密度和低密度變化的區塊。進一步藉由希爾伯特轉換與複數平面之分析,量測缺陷介導紊波之振福與相位變化,發現低振幅洞與缺陷同時發生。藉由觀測三維時空的低振幅洞軌跡,發現缺陷可以透過產生與結合,導致低振幅洞擁有不同生存時間與移動速度。此外,越亂的缺陷介導紊波將導致更多的幅度與相位的調製,亦導致更混亂的三維時空低振幅洞軌跡。
摘要(英) The dust acoustic wave (DAW) with longitudinal dust particle oscillation can be self-excited by ion streaming in the dusty plasma. From the plasma side, it is a fundamental plasma wave. From nonlinear dynamics view, it is also a good platform to investigate the generic behavior of wave dynamics from the ordered wave to the wave turbulence for the 3D traveling acoustic type waves, due to the capability of monitoring its spatiotemporal waveform evolution through direct particle imaging. It has been found that the regular DAW can be tuned to the wave turbulence state, exhibiting multifractal dynamics. However, the intermediate state on the way to the wave turbulence has never been investigated.
In this work, by monitoring the spatiotemporal waveform evolutions in the transverse (xy) plane and the longitudinal (xz) planes, we demonstrate the first laboratory observations of the defect-mediated wave turbulence with fluctuating phase defects, dust depletion bubbles and chaotic low amplitude hole filament bundles in a downward propagating 3D plane DAW by reducing pressure. It is found that the onset of the waveform undulation leads to the fluctuating phase defect excitations, the amplitude and the phase modulations of the local dust density oscillation, and the broadening of the sharp peaks in the power spectrum. The bending, breaking, and connecting of wave crests in the longitudinal (xz) plane lead to the phase defect motion. High and low density patches in the transverse (xy) plane, and dust depletion bubbles surrounded by high density walls are observed. The trajectories of the low oscillation amplitude holes appear in the form of chaotic filament bundles along the defect trajectories in the xyt space. Holes with uncertain life times and speeds can be generated and annihilated through defect pair generation and recombination. The more irregular state leads to more amplitude/phase modulations of waveform undulations and more chaotic hole filaments.
關鍵字(中) ★ 電漿微粒聲波
★ 缺陷介導紊波
關鍵字(英) ★ Dust acoustic wave
★ Defect-mediated turbulence
論文目次 Abstract i
Acknowledgements ii
List of Figures v
1 Introduction 1
2 Background and theory 5
2.1 Dust acoustic wave . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Dusty plasma system . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Studies on linear dust acoustic waves . . . . . . . . . . . . 6
2.1.3 Studies on nonlinear dust acoustic waves . . . . . . . . . . 8
2.1.4 From the regular dust acoustic wave to the dust acoustic
wave turbulence . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Defect-mediated turbulence in nonlinear extended media . . . . . 10
2.2.1 Modulational equations for amplitude and phase modulations 10
2.2.2 Plane, spiral and scroll wave patterns in di erent dimensions 13
2.2.3 Dynamics and statistical measurements of phase defects
and vortex laments . . . . . . . . . . . . . . . . . . . . . 14
3 Experiment and data analysis 17
3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Data analysis: normalized dust density
uctuation . . . . . . . . . 22
4 Result and discussion 23
4.1 Local temporal dust density oscillations . . . . . . . . . . . . . . . 23
4.1.1 Amplitude and frequency modulations of the local nd(t) . . 24
4.1.2 The complex function analysis of the local nd(t) . . . . . . 25
4.2 The longitudinal xz plane: Spatial waveform undulation . . . . . 29
4.2.1 Wave crest bending, breaking, and connecting associated
with defect excitations . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Wave crest bubbles associated with defect excitations with
opposite direction . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Onset of phase defect pairs in the presence of x-shaped
waveform undulations . . . . . . . . . . . . . . . . . . . . 35
4.3 The transverse xy plane: Dust density patch
uctuations . . . . . 37
4.3.1 Density patches and dust depletion bubbles . . . . . . . . 38
4.3.2 Phase defects with the low amplitude holes and large frequency
deviation . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 Low amplitude hole lament bundles . . . . . . . . . . . . 46
4.3.4 Statistical properties of low amplitude holes . . . . . . . . 53
5 Conclusion 56
參考文獻 [1] P. K. Shukla and A. A. Mamun. Introduction to Dusty Plasma Physics. The
Institute of Physics, London, 2002.
[2] P. K. Shukla and B. Eliasson. Colloquium: Fundamentals of dust-plasma
interactions. Rev. Mod. Phys., 81:25, 2009.
[3] N. N. Rao, P. K. Shukla, and M. Y. Yu. Dust-acoustic waves in dusty
plasmas. Planet. Space Sci., 338:543, 1990.
[4] V. E. Fortov, A. D. Usachev, A. V. Zobnin, V. I. Molotkov, and O. F.
Petrov. Dust-acoustic wave instability at the di use edge of radio frequency
inductive low-pressure gas discharge plasma. Phys. Plasmas, 10:1199, 2003.
[5] P. Kaw and R. Singh. Collisional instabilities in a dusty plasma with recombination
and ion-drift e ects. Phys. Rev. Lett., 79:423, 1997.
[6] A. Piel, M. Klindworth, O. Arp, A. Melzer, and M. Wolter. Obliquely
propagating dust-density plasma waves in the presence of an ion beam.
Phys. Rev. Lett., 97:205009, 2006.
[7] A. A. Mamun and P. K. Shukla. Streaming instabilities in a collisional dusty
plasma. Phys. Plasmas, 7:4412, 2000.
[8] A. Barkan, R. L. Merlino, and N. D’Angelo. Laboratory observation of the
dust acoustic wave mode. Phys. Plasmas, 2:3563, 1995.
[9] C. Thompson, A. Barkan, N. D’Angelo, and R. L. Merlino. Dust acoustic
waves in a direct current glow discharge. Phys. Plasmas, 4:2331, 1997.
[10] M. Schwabe, M. Rubin-Zuzic, S. Zhdanov, H. M. Thomas, and G. E. Morll.
Highly resolved self-excited density waves in a complex plasma. Phys. Rev.
Lett., 99:095002, 2007.
[11] Chen-Ting Liao, Lee-Wen Teng, Chen-Yu Tsai, Chong-Wai Io, and Lin I.
Lagrangian-eulerian micromotion and wave heating in nonlinear self-excited
dust-acoustic waves. Phys. Rev. Lett., 100:185004, 2008.
[12] Lee-Wen Teng, Mei-Chu Chang, Yu-Ping Tseng, and Lin I. Wave-particle
dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev.
Lett., 103:245005, 2009.
[13] R. L. Merlino, J. R. Heinrich, S.-H. Hyun, and J. K. Meyer. Nonlinear dust
acoustic waves and shocks. Phys. Plasmas, 19:057301, 2012.
[14] J. Heinrich, S.-H. Kim, and R. L. Merlino. Laboratory observations of selfexcited
dust acoustic shocks. Phys. Rev. Lett., 103:115002, 2009.
[15] P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw. Experimental study
of nonlinear dust acoustic solitary waves in a dusty plasma. Phys. Rev. Lett.,
101:065006, 2008.
[16] P. K. Shukla and B. Eliasson. Nonlinear dynamics of large-amplitude dust
acoustic shocks and solitary pulses in dusty plasmas. Phys. Rev. E, 86:
046402, 2012.
[17] W. D. Suranga Ruhunusiri and J. Goree. Synchronization mechanism and
arnold tongues for dust density waves. Phys. Rev. E, 85:046401, 2012.
[18] K. O. Menzel, O. Arp, and A. Piel. Spatial frequency clustering in nonlinear
dust-density waves. Phys. Rev. Lett., 104:235002, 2010.
[19] J. Pramanik, B.M. Veeresha, G. Prasad, A. Sen, and P.K. Kaw. Experimental
observation of dust-acoustic wave turbulence. Phys. Lett. A, 312:84,
2003.
[20] Ya-Yi Tsai, Mei-Chu Chang, and Lin I. Observation of multifractal intermittent
dust-acoustic-wave turbulence. Phys. Rev. E, 86:045402, 2012.
[21] Petr Denissenko, Sergei Lukaschuk, and Sergey Nazarenko. Gravity wave
turbulence in a laboratory
ume. Phys. Rev. Lett., 99:014501, 2007.
[22] E. Falcon, C. Laroche, and S. Fauve. Observation of gravity-capillary wave
turbulence. Phys. Rev. Lett., 98:094503, 2007.
[23] E. Falcon, S. Fauve, and C. Laroche. Observation of intermittency in wave
turbulence. Phys. Rev. Lett., 98:154501, 2007.
[24] Arezki Boudaoud, Olivier Cadot, B. Odille, and Cyril Touze. Observation
of wave turbulence in vibrating plates. Phys. Rev. Lett., 100:234504, 2008.
[25] Nicolas Mordant. Are there waves in elastic wave turbulence? Phys. Rev.
Lett., 100:234505, 2008.
[26] A. N. Ganshin, V. B. Emov, G. V. Kolmakov, L. P. Mezhov-Deglin, and
P. V. E. McClintock. Observation of an inverse energy cascade in developed
acoustic turbulence in super
uid helium. Phys. Rev. Lett., 101:065303, 2008.
[27] G. V. Kolmakov, V. B. Emov, A. N. Ganshin, P. V. E. McClintock, and L. P.
Mezhov-Deglin. Formation of a direct kolmogorov-like cascade of secondsound
waves in he ii. Phys. Rev. Lett., 97:155301, 2006.
[28] G. Y. Antar, S. I. Krasheninnikov, P. Devynck, R. P. Doerner, E. M. Hollmann,
J. A. Boedo, S. C. Luckhardt, and R. W. Conn. Experimental evidence
of intermittent convection in the edge of magnetic connement devices.
Phys. Rev. Lett., 87:065001, 2001.
[29] S. Futatani, S. Benkadda, Y. Nakamura, and K. Kondo. Multiscaling dynamics
of impurity transport in drift-wave turbulence. Phys. Rev. Lett., 100:
025005, 2008.
[30] V. E. Zakharov, V. S. Lvov, and G. Falkovich. Kolmogorov Spectra of Tur-
bulence I. Springer, Berlin, 1992.
[31] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium.
Rev. Mod. Phys., 65:851, 1993.
[32] Igor S. Aranson and Lorenz Kramer. The world of the complex ginzburglandau
equation. Rev. Mod. Phys., 74:99, 2002.
[33] Vladimir Garcia-Morales and Katharina Krischer. The complex ginzburglandau
equation: an introduction. Contemporary Physics, 53:79, 2012k.
[34] Francis F. Chen. Introduction to Plasma Physics. Plenum Press, New York,
1974.
[35] Brian Chapman. Glow Discharge Processes. John Wiley & Sons, Inc., 1980.
[36] V. Nosenko, S. K. Zhdanov, S.-H. Kim, J. Heinrich, R. L. Merlino, and
G. E. Mor ll. Measurements of the power spectrum and dispersion relation
of self-excited dust acoustic waves. EPL, 88:65001, 2009.
[37] T. M. Flanagan and J. Goree. Development of nonlinearity in a growing
self-excited dust-density wave. Phys. Plasmas, 18:013705, 2011.
[38] W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla. Dust-acoustic
rogue waves in a nonextensive plasma. Phys. Rev. E, 85:066402, 2011.
[39] K. O. Menzel, O. Arp, and A. Piel. Frequency clusters and defect structures
in nonlinear dust-density waves under microgravity conditions. Phys. Rev.
E, 83:016402, 2011.
[40] K. O. Menzel, O. Arp, and A. Piel. Chain of coupled van der pol oscillators
as model system for density waves in dusty plasmas. Phys. Rev. E, 84:
016405, 2011.
[41] Iris Pilch, Torben Reichstein, and Alexander Piel. Synchronization of dust
density waves in anodic plasmas. Phys. Plasmas, 16:123709, 2009.
[42] Mei-Chu Chang, Lee-Wen Teng, and Lin I. Micro-origin of no-trough trapping
in self-excited nonlinear dust acoustic waves. Phys. Rev. E, 85:046410,
2012.
[43] Qi Ouyang, Harry L. Swinney, and Ge Li. Transition from spirals to defectmediated
turbulence driven by a doppler instability. Phys. Rev. Lett., 84:
1047, 2000.
[44] Chun Qiao, Hongli Wang, and Qi Ouyang. Defect-mediated turbulence in
the belousov-zhabotinsky reaction. Phys. Rev. E, 79:016212, 2009.
[45] Qi Ouyang and J.-M. Flesselles. Transition from spirals to defect turbulence
driven by a convectie instability. Nature, 379:143, 1996r.
[46] Eberhard Bodenschatz, Werner Pesch, and Guenter Ahlers. Recent developments
in rayleigh-bEnard convection. Annu. Rev. Fluid Mech., 32:709,
2000.
[47] V. Croquette, M. Mory, and F. Schosseler. Rayleigh-benard convective structures
in a cylindrical container. J. Physique, 44:293, 1983.
[48] V. Croquette, P. Le Gal, and A. Pocheau. Spatial features of the transition
to chaos in an extended system. Physica Scripta., T13:153, 1986.
[49] Ste en Rasenat, Victor Steinberg, and Ingo Rehberg. Experimental studies
of defect dynamics and interaction in electrohydrodynamic convection. Phys.
Rev. A, 42:2998, 1990.
[50] Ingo Rehberg, Steven Rasenat, and Victor Steinberg. Traveling waves and
defect-initiated turbulence in electroconvecting nematics. Phys. Rev. Lett.,
62:756, 1989.
[51] N. B. Tu llaro, R. Ramshankar, and J. P. Gollub. Order-disorder transition
in capillary ripples. Phys. Rev. Lett., 62:422, 1989.
[52] Itamar Shani, Gil Cohen, and Jay Fineberg. Localized instability on the
route to disorder in faraday waves. Phys. Rev. Lett., 104:184507, 2010.
[53] H. Arbell and J. Fineberg. Temporally harmonic oscillons in newtonian fuids. Phys. Rev. Lett., 85:756, 2000.
[54] P. Coullet, L. Gil, and J. Lega. Defect-mediated turbulence. Phys. Rev.
Lett., 62:1619, 1989.
[55] Alan C. Newell, Thierry Passot, and Joceline Lega. Order parameter equations
for patterns. Annu. Rev. Fluid Mech., 25:399, 1993.
[56] Hugues Chate. Spatiotemporal intermittency regimes of the one-dimensional
complex ginzburg-landau equation. Nonlinearity, 7:185, 1994.
[57] Martin van Hecke. Building blocks of spatiotemporal intermittency. Phys.
Rev. Lett., 80:1896, 1998.
[58] Sergio Alonso, Francesc Sagues, and Alexander S. Mikhailov. Taming winfree
turbulence of scroll waves in excitable media. Science, 299:1722, 2003.
[59] A. T. Winfree, S. Caudle, G. Chen, P. McGuire, and Z. Szilagyi. Quantitative
optical tomography of chemical waves and their organizing centers.
Chaos, 6:617, 1996.
[60] M. Vinson, S. Mironov, S. Mulvey, and A. Pertsov. Control of spatial orientation
and lifetime of scroll rings in excitable media. Nature, 386:477,
1997.
[61] Dagmar Krefting and Carsten Beta. Theoretical analysis of defect-mediated
turbulence in a catalytic surface reaction. Phys. Rev. E, 81:036209, 2010.
[62] Hongli Wang. Statistics of defect-mediated turbulence inuenced by noise.
Phy. Rev. Lett., 93:154101, 2004.
[63] Karen E. Daniels, Christian Beck, and Eberhard Bodenschatz. Defect turbulence
and generalized statistical mechanics. Physica D, 193:208, 2004.
[64] R.H. Clayton, E.A. Zhuchkova, and A.V. Panlov. Phase singularities and
laments: Simplifying complexity in computational models of ventricular brillation.
Progress in Biophysics and Molecular Biology, 90:378, 2006.
[65] Zhilin Qu, Jong Kil, Fagen Xie, Alan Gar nkel, and James N. Weiss. Scroll
wave dynamics in a three-dimensional cardiac tissue model: Roles of restitution,
thickness, and ber rotation. Biophysical Journal, 78:2761, 2000.
[66] J. Davidsen, Meng Zhan, and Raymond Kapral. Filament-induced surface
spiral turbulence in three-dimensional excitable media. Phys. Rev. Lett.,
101:208302, 2008.
[67] J. C. Reid, H. Chate, and J. Davidsen. Filament turbulence in oscillatory
media. EPL, 94:68003, 2011.
[68] Mei-Chu Chang, Yu-Ping Tseng, and Lin I. Projectile channeling in chain
bundle dusty plasma liquids: Wave excitation and projectile-wave interaction.
Phys. Plasmas, 18:033704, 2011.
指導教授 伊林(Lin I) 審核日期 2013-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明