國立中央大學通訊工程學系 102 學年度碩士在職專班入學筆試【電子學】試卷

考試地點:通訊館一樓 E1-109 室 考試時間:100 分鐘 試題總分:100分

Please answer the following questions appropriately, and the final score will depend on the completeness of your answers.

Q1. (18 pt) Consider a semiconductor for which the electron concentration in silicon at T = 300K is $n_0 = 5 \times 10^{15} cm^{-3}$. Please answer the following questions:

- (a) (6 pt) Determine the hole concentration.
- (b) (6 pt) Is the material n-type or p-type? why?
- (c) (6 pt) What is the impurity doping concentration?
- **Q2.** (12 pt) Consider a diode circuit in Fig. 1 with the parameters $v_I = 15\sin(\omega t)(V)$, $R = 10k\Omega$, and $V_B = 2V$. Assume the cut-in voltage for the pn junction diode is $V_r = 0.6V$. Please answer the following questions:
- (a) (6 pt) What is the peak inverse voltage of the diode?
- (b) (6 pt) Sketch v_o versus time over two periods of the input signal v_I .

Q3. (18 pt) Consider the circuit shown in Fig. 2. Assume the cut-in voltage for each diode is $V_r = 0.6V$. Determine the output voltage V_o and the currents I_{D1} , I_{D2} , and I_{D3} for the following input conditions:

- (a) (6 pt) $V_1 = V_2 = 0V$
- (b) (6 pt) $V_1 = V_2 = 5V$
- (c) (6 pt) $V_1 = 5V$, $V_2 = 0V$

國立中央大學通訊工程學系 102 學年度碩士在職專班入學筆試【電子學】試卷

考試地點:通訊館一樓 E1-109 室 考試時間:100 分鐘 試題總分:100分

Q4. (**24 pt**) Consider an amplifier circuit in Fig. 3. Circuit parameters are $V_{DD} = 12V$, $R_1 = 162k\Omega$, $R_2 = 463k\Omega$, $R_S = 0.75k\Omega$, and $R_{Si} = 4k\Omega$. The parameters for the n-channel enhancement-mode MOSFET transistor are $V_{TN} = 1.5V$, $K_n = 4mA/V^2$, and $\lambda = 0.01V^{-1}$. Please answer the following questions:

- (a) (6 pt) Calculate the quiescent gate-to-source voltage V_{GS} and drain-to-source voltage V_{DS} .
- (b) (6 pt) Plot the small-signal model for the amplifier circuit.
- (c) (6 pt) Determine the small-signal voltage gain.
- (d) (6 pt) Calculate the input resistance and output resistance.

Q5. (6 pt) Consider the BJT circuit shown in Fig. 4. The circuit parameters R_B , R_E and R_C are respectively given by $180k\Omega$, $1k\Omega$ and $4k\Omega$, and assume the common-emitter current gain of the transistor, β , is given by 100. Plot the voltage transfer characteristics (V_O versus V_I) over the range $0V \le V_I \le 5V$.

Q6. (22 pt) Consider a multistage BJT circuit in Fig. 5. The transistor parameters are $\beta = 100$ (common-emitter current gain), $V_A = \infty$ (early voltage) and $V_{BE(on)} = 0.7V$. Please complete the

DC and AC analysis by answering the following questions:

- (a) (5 pt) Calculate the DC current through the elements R_{E1} and R_{C2} .
- (b) (5 pt) Plot the small-signal model for the multistage circuit.
- (c) (6 pt) Determine the small-signal voltage gain.
- (d) (6 pt) Find the small-signal input resistance and output resistance.

國立中央大學通訊工程學系 102 學年度碩士在職專班入學筆試【電子學】試卷

考試地點:通訊館一樓 E1-109 室 考試時間:100 分鐘 試題總分:100分

