所別:<u>電機工程學系碩士班 固態組(一般生)</u> 科目:<u>半導體元件</u> 共<u></u>頁 第<u></u>頁 本科考試禁用計算器

*請在試卷答案卷(卡)內作答

1.

- (a) At 300 K, the lattice constant for Si is 5.431×10^{-8} cm⁻³. Calculate the number of Si atoms per cubic centimeter and the distance between nearest neighbors in Si. (10 分)
- (b) Consider the density of states for a free electron given by $g(E) = c \times \sqrt{E}$ $(eV)^{-1}cm^{-3}$, where c is a constant and E is the energy in eV. Calculate the density of states per cubic centimeter with energies between 0 and 1 eV. (5 分)
- (c) Let T=300 K, kT=0.026 eV. Determine the probability that an energy level kT above the Fermi energy is occupied by an electron. $e^1=2.718$. (5 \Re)

2

- (a) If W is the space charge width in a pn junction, and assume $W = \{V_{bi} \times f_1\}^{1/2}$, where f_1 is a function of dopings N_a and N_d . Find the expression for $f_1(N_a, N_d)$. (10分)
- (b) If a p⁺n junction is biased with a reverse-biased voltage V_R . Assume the inverse capacitance squared is given as $(1/C')^2 = f_1(f_2 + V_R)$, where f_1 is a function of N_d , f_2 is a function of V_{bi} , and C' is the capacitance per unit area. Find $f_1(N_d)$ and $f_2(V_{bi})$. (10 \Re)

3.

- (a) Sketch the minority carrier concentrations in a pnp bipolar transistor biased in the forward-active mode. (5 分)
- (b) Describe the voltage breakdown mechanisms in a bipolar transistor. (5 分)

(c) Define I_{CBO} and I_{CEO} , and explain why $I_{CEO} > I_{CBO}$. (5 分)

(d) Define the emitter injection efficiency factor γ and base transprt factor α_T in a bipolar transistor. (5 \mathcal{H})

4

Consider a silicon MOS device at $T=300~\rm K$ for the following parameters: p⁺ polysilicon gate, $N_a=10^{16}~\rm cm^{-3}$, $t_{ox}=8~\rm nm$, and the fixed charge at SiO₂-Si interface $Q_{ss}'=10^{10}~\rm cm^{-2}$.

- (a) Calculate the metal-semiconductor work function difference ϕ_{ms} , and the maximum space charge width x_{dT} . (10 分)
- (b) Calculate the threshold voltage V_{TN} . (10 分)

The following data may be used for calculation: $\ln 10^3 = 2.3 \log 10^3 = 6.9$. $\ln x = 2.3 \log x$. $V_t = kT/q = 0.026$ V. Silicon band gap $E_G = 1.12$ eV. $n_i = 10^{10}$ cm⁻³. $\epsilon_{Si} = 11.7 \times 8.85 \times 10^{-14}$ F/cm. $\epsilon_{SiO_2} = 3.9 \times 8.85 \times 10^{-14}$ F/cm. $q = 1.6 \times 10^{-19}$ C.

5.

For n-channel MOSFET, $I_D = \beta_n [2(V_{GS} - V_{TN})V_{DS} - V_{DS}^2]$ in the linear region, and $I_D = \beta_n (V_{GS} - V_{TN})^2$ in the saturation region. For p-channel MOSFET, the I_D can be obtained by modifying the above equations. Consider a p-channel MOSFET with $\beta_p = 1 \text{ mA/V}^2$.

- (a) Assume the drain current $I_D=1$ mA from source to drain, $V_{SG}=2$ V, $V_{BS}=0$ V, and $V_{SD}=1.2$ V. Determine the V_{TP} value. V_{TP} should be negative. (10 %)
- (b) Assume $V_{SG}=2$ V, $V_{BS}=0$ V, and $V_{SD}=0.2$ V. Calculate the drain current I_D . (10 分)

參考用