博碩士論文 100324030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.12.111.193
姓名 查昱伶(Yu-lin Cha)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金觸媒於富氫氣流中選擇性一氧化碳氧化反應之應用
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 燃料電池除了能高效率的把化學能轉化成電能,更是一種方便攜帶的能源。在燃料電池產氫能的過程中會產出副產物一氧化碳,一氧化碳會毒化白金電極,而選擇性氧化一氧化碳反應(PROX)將一氧化碳減至< 5 ppm,是目前最能有效移除一氧化碳方法之一。本研究將金之奈米顆粒擔載於二氧化鈰-四氧化三鈷及二氧化鈰-二氧化鋯上,並應用於富氫氣流中之一氧化碳選擇性氧化反應中。四氧化三鈷和二氧化鋯則是以含浸法和共沉澱法這兩種方式與二氧化鈰擔體混合,之後再使用沉積沉澱法將金顆粒擔載於上述擔體。在此研究中,改變不同的促進劑比例和製備方法找出最佳的條件以製備出最適合PROX反應之金觸媒。製備完成的觸媒經過X光繞射分析儀、穿透式電子顯微鏡和X光電子能譜儀等鑑定分析其觸媒性質。PROX反應是在固定床反應器中填充0.1克觸媒,並以進料氣體CO/O2/H2/He 體積比為1.33/1.33/65.33/32.01,總流量控制在50 ml/min下進行反應。結果顯示在某些比例下金/二氧化鋯-二氧化鈰及金/四氧化三鈷-二氧化鈰觸媒在80-100℃對一氧化碳的轉化率及轉化率比金/二氧化鈰觸媒更好。其中金/四氧化三鈷-二氧化鈰(5:95)觸媒在80℃下更可將一氧化碳完全轉化。金以1-3奈米的大小分佈於擔體上。加入二氧化鋯之後,不論是使用含浸法或是共沉澱法製備,觸媒在低溫下的轉化率相較於金擔載於二氧化鈰都有明顯的提升。在金/四氧化三鈷-二氧化鈰觸媒方面,一氧化碳氧化的選擇率隨著四氧化三鈷加入的比例增加而上升。兩種觸媒在燃料電池操作溫度(65-100℃)下進行反應,金/四氧化三鈷-二氧化鈰(5:95)使用共沉澱法製備的觸媒可在80℃將一氧化碳完全轉化。
摘要(英) Nanoscaled gold particles supported on CeO2-ZrO2 and CeO2-Co3O4 was used for preferential oxidation of carbon monoxide in hydrogen-rich stream (PROX). They were loaded on CeO2-ZrO2 and CeO2-Co3O4 through deposition-precipitation method. The catalysts with different ratio of Ce/Zr andCe/Co and different preparation method were tested to develop the best catalyst for PROX reaction. These catalysts were characterized by XRD, TEM, and XPS. The PROX reaction was carried out in a fixed bed continuous flow reactor with a feed of CO: O2: H2: He = 1.33: 1.33: 65.33: 32.01 in volume ratios. The results showed that the catalyst with specific Ag content and calcinations temperature could reach 100% of CO conversion at the PEM fuel cells operating temperature (65℃-100℃) even as the gold content was 1 wt. %. The particle size of gold was around 1-3 nm and Au particles were dispersed well on the support. In Au/Co3O4-CeO2 catalysts, only Co/Ce=2/98and5/95 show better activity than Au/Ceo2 and the CO selectivity increase because of adding Cobalt. In Au/ZrO2-CeO2 catalyst, only Zr/Ce=2/98and5/95 show better activity than Au/Ceo2 and the CO selectivity decrease as the reaction temperature increase. These two kinds of catalyst underwent reaction with operating temperature 80℃, the Au/ Co3O4-CeO2 (5:95)catalysts prepared by co-precipitation can converted CO to CO2completely.
關鍵字(中) ★ 一氧化碳氧化
★ 金觸媒
★ 二氧化鋯
★ 四氧化三鈷
★ 二氧化鈰
★ 燃料電池
關鍵字(英) ★ CO oxidation
★ gold
★ CeO2
★ PROX
★ fuel cell
論文目次 摘要 1
Abstract II
Table of Content III
List of Figures VI
List of Tables XII
Chapter 1. Introduction 1
Chapter 2. Literature Review 3
2.1 PROX Catalyst 3
2.2Preparation of Gold Catalysts 4
2.2.1 Impregnation method 5
2.2.2 Co-precipatationMethod 5
2.2.3Deposition-precipitation Method 6
2.2.4Other Method 10
2.3Au-support Interaction 13
2.4Applications of Gold Catalyst 14
2.5. Gold Catalysts Apply on PROX Reaction 15
2.5.1 Active Site of Gold Catalyst 15
2.5.2 Particle size effect 16
2.5.3 Support Effect 17
2.5.4 Promoter Effect 20
2.5.5 Reaction Mechanism 22
Chapter 3. Experimental 26
Chapter 4. Au/ZrO2-CeO2 Catalyst for Preferential Oxidation of CO in Hydrogen-rich Stream 31
4.1 Introduction 31
4.2 The Effect of Zr/Ce Ratio on Au/ZrO2-CeO2 catalyst 31
4.2.1XRD 32
4.2.2TEM 34
4.2.3HR-TEM 34
4.2.4XPS 37
4.2.5PROX Reaction 37
4.3 The Effect of preparation method of Catalyst 44
4.3.1XRD 44
4.3.2TEM 46
4.2.3HR-TEM 48
4.3.4XPS 49
4.3.5PROX Reaction 54
4.4 Conclusion 56
Chapter 5. Au /Co3O4-CeO2 Catalyst for Preferential Oxidation of CO inHydrogen-rich Stream 58
5.1 Introduction 58
5.2 The Effect of Co/Ce Ratio on Au /Co3O4-CeO2 catalyst 59
5.2.1XRD 59
5.2.2TEM 61
5.2.3 XPS 63
5.2.4 PROX Reaction 67
5.3 The Effect of preparation method of Catalyst 71
5.3.1XRD 71
5.3.2TEM 72
5.3.3 XPS 74
5.3.4 PROX Reaction 78
5.4 conclusion 81
Chapter 6. Summary 83
Reference 84
參考文獻 Reference
1. Mariño, F., Descorme, C., Duprez, D., ” Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX)”, Applied Catalysis B: Environmental 54 (2004) 59–66
2. D Delannoya, L., Weiherb, N., Tsapatsarisb, N., Beesleyb, A.M., Ncharib, L., Schroederb, L.M., Louis, C., ” Reducibility of supported gold (III) precursors: influence of the metal oxide support and consequences for CO oxidation activity”, Topics in Catalysis Vol. 44 (2007) 1-2
3. Bera, P., Hegde, M.S.,”Charaterization and catalytic properties of combustion synthesized Au/CeO2 catalyst”,Catal Lett 79 (2002) 1-4
4. Dekkers, M.A.P., Lippits, M.J., Nieuwenhuys, B.E., ” Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions”, Catalysis Today 54 (1999) 381–390
5. Qi, C., Akita, T., Okumura, M., Kuraoka, K., Haruta, M., ” Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature”, Applied Catalysis A: General 253 (2003) 75–89
6. Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications”, Gold Bulletin 37 (2004 ) 1–2
7. Haruta, M., ” Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation”, Journal of New Materials for Electrochemical Systems 7 (2004) 163-172
8. Zanella, R., Giorgio, S., Henry, C.R., Louis, C., ” Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2”, J. Phys. Chem. B 106 (2002) 7634-764
9. Moreau, F., Bond, G.C., Taylor, A.O., ” Gold on titania catalysts for the oxidation of carbon monoxide:control of pH during preparation with various gold contents”, Journal of Catalysis 231 (2005) 105–114
10. Haruta, M., ” Size- and support-dependency in the catalysis of gold”, Catalysis Today 36 (1997) 153-166
11. Zhao, B., Yang, Y.F., Chen, Y.W., ” Au/FeOx-TiO2 Catalysts for the Preferential Oxidation of CO in H2 Stream”, The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress (2010)
12. Sangeetha, P., Chang, L.H., Chen, Y.W., ” Preferential Oxidation of CO in H2 Stream on Au/TiO2 Catalysts: Effect of Preparation Method”, Ind. Eng. Chem. Res. 48 (2009) 5666–5670
13. Luengnaruemitchaia, A., Osuwana, S., Gularib, E., ” Selective catalytic oxidation of CO in the presence of H2 over gold catalyst”, International Journal of Hydrogen Energy 29 (2004) 429 – 435
14. Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M., Haruta, M., ” Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2”, Catalysis Letters 51 (1998) 53–58
15. Bond, G.C., Thompson, D.T., ” Gold-Catalysed Oxidation of Carbon Monoxide”, GoldBulletin 2 (2000) 33
16. Okumura, M., Kitagawa, Y., Haruta, M., Yamaguchi, K., ” The interaction of neutral and charged Au clusters with O2, CO and H2”, Applied Catalysis A: General 291 (2005) 37–44
17. Mavrikakis, M., Stoltze, P., Nørskov, J.K., ” Making gold less noble”, Catalysis Letters 64 (2000) 101–106
18. Imai, H., Date, M., Tsubota, S., ” Preferential Oxidation of CO in H2-Rich Gas at Low Temperatures over Au Nanoparticles Supported on Metal Oxides”, Catal Lett 124 (2008) 68–73
19. Rossignol, C., Arrii, S., Morfin, F., Piccolo,L., Caps, V., Rousset, J., “Selective oxidation of CO over model gold-based catalysts in the presence of H2”, Journal of Catalysis 230 (2005) 476–483
20. Wang, H., Zhu, H., Qin, Z., Wang, G., Liang, F., Wang, J., ” Preferential oxidation of CO in H2 rich stream over Au/CeO2–Co3O4 catalysts”, Catalysis Communications 9 (2008) 1487–1492
21. Schubert, M.M., Hackenberg, S., Veen, A.C., Muhler. M., Plzak, V., Behm, R.J., ” CO Oxidation over Supported Gold Catalysts—“Inert” and “Active”Support Materials and Their Role for the Oxygen Supply during Reaction”, Journal of Catalysis 197 (2001) 113–122
22. Panzera, G., Modafferi, V., Candamanoa, S., Donato, A., Frusteri, F., Antonucci, P.L., ” CO selective oxidation on ceria-supported Au catalysts for fuel cell application”, Journal of Power Sources 135 (2004) 177–183
23. Schubert, M.M., Plzak, V., Garche, J., Behm, R.J., ” Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas”, Catalysis Letters Vol. 76, No. 3–4, (2001)
24. Liotta, L.F., Carlo, G.D., Pantaleo, G., Venezia, M., ” Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect”, Catalysis Today 158 (2010) 56–62
25. Andreeva, D., ” Low Temperature Water Gas Shift over Gold Catalysts”, Gold Bulletin 35 (2002) 3-10
26. Widmann, D., Leppelt, R., Behm, R.J., ” Activation of a Au/CeO2 catalyst for the CO oxidation reaction by surface oxygen removal/oxygen vacancy formation”, Journal of Catalysis 251 (2007) 437–442
27. Akita, T., Okumura, M., Tanaka, K., Kohyama, M., Haruta, M., ” Analytical TEM observation of Au nano-particles on cerium oxide”, Catalysis Today 117 (2006) 62–68
28. Yi, G., Yang, H., Li, B., Lin, H., Tanaka, K., Yuan, Y., ” Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts: Nanoscale CeO2 shape effect and mechanism aspect”, Catalysis Today 157 (2010) 83–88
29. Venezia, A.M., Pantaleo, G., Longo, A., Carlo, G.D., Casaletto, M.P., Liotta, F.L., Deganello, G., ” Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts”, J. Phys. Chem. B 109 (2005) 2821-2827
30. Huang, X.S., Sun, H., Wang, L.C., Liu, Y.M., Fan, K.N., Cao, Y., ” Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation”, Applied Catalysis B: Environmental 90 (2009) 224–232
31. Chen, Z., Gao, Q., ” Enhanced carbon monoxide oxidation activity over gold–ceria nanocomposites”, Applied Catalysis B: Environmental 84 (2008) 790–796
32. Gluhoi, A.C., Vreeburg, H.S., Bakker, J.W., Nieuwenhuys, B.E., ” Activation of CO, O2 and H2 on gold-based catalysts”, Applied Catalysis A: General 291 (2005) 145–150
33. Fu, Q., Saltsburg, H., Stephanopoulos, M.F., ” Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts”, Science 301 (2003) 935-938
34. Wang, X., Lu, G., Guo, Y., Zhang, Z., Guo, Y., ” Role of Rh promoter on increasing stability of Au/Al2O3 catalyst for CO oxidation at low temperature”, Environ Chem Lett 9 (2011) 185–189
35. Laguna, O.H., Sarria, F., Centeno, M.A., Odriozola, J.A., ” Gold supported on metal-doped ceria catalysts (M = Zr, Zn and Fe) for the preferential oxidation of CO (PROX)”, Journal of Catalysis 276 (2010) 360–370
36. Gustafson, J., Westerstro, R., Resta, A., Mikkelsen, A., Andersen, J.N., Balmes, O., Torrelles, X., Schmid, M., Varga, P., Hammerf, B., Kresse, G., Baddeley, C.J., Lundgren, E., ” Structure and catalytic reactivity of Rh oxides”, Catalysis Today 145 (2009) 227–235
37. Luengnaruemitchaia, A., Osuwana, S., Gularib, E., ” Selective catalytic oxidation of CO in the presence of H2 over gold catalyst”, International Journal of Hydrogen Energy 29 (2004) 429 – 435
38. Kipnis, M., Volnina, E., ” Н2 oxidation and preferential CO oxidation over Au: new approaches”, Applied Catalysis B, Environmental (2010)1-25
39. Quinet, E., Piccolo, L., Morfin, F., Avenier, P., Diehl, F., Caps, V., Rousset, J.L., ” On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation”, Journal of Catalysis 268 (2009) 384–389
40. Qu, Z., Cheng, M., Huang, W., Bao, X., ” Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts”, Journal of Catalysis 229 (2005) 446–458
41. Wang, A.Q., Liu, J.H., Lin, S.D., Lin, T.S., Mou, C.Y., ” A novel efficient Au–Ag alloy catalyst system:preparation, activity, and characterization”, Journal of Catalysis 233 (2005) 186–197
42. Ruettinger,W.G.,Liu,X.S.,Farrauto,R.J., ”mechanism of aging for a Pt/CeO2-ZrO2 water gas shift catalyst” Applied Catalyst B:Environmental 65 (2006) 135-141
43. Jena,H.-W., Grahama, G.W., Chuna,W., McCabea,R.W., Cuifb,J.-P., Deutschb,S.E., Touret,O., ”Characterization of model automotive exhaust catalysts:Pd on ceria and ceria-zirconia supports” Catalysis Today 50 (1999)309-328
44. Abdelsayed, V., Aljarash, A., El-Shall, M.S., ” Microwave Synthesis of Bimetallic Nanoalloys and CO Oxidation on Ceria-Supported Nanoalloys”, Chem. Mater. 21 (2009) 2825–2834
45. Ligthart, D. A., Santen, R.A., Hensen, E.J.M., ” Supported Rhodium Oxide Nanoparticles as Highly Active CO Oxidation Catalysts”, Chem. Int. Ed. 50 (2011) 5306 –5310
46. Schmieg,S.J., Belton,D.N., ” Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst ” Applied Catalysis B: Environmental 6 ( 1995) 127-144
47. Kim,C.H., Thompson, L. T., ” Deactivation of Au/CeOx water gas shift catalysts” Journal of Catalysis 230 (2005) 66–74
48. Kim,C.H., Thompson, L.T., ”Role of Zirconia in Stabilyzing Ceria Supported Gold Water Gas Shift Catalysts” GOLD 2006 New Industrial Application for Gold, Limerick, Ireland, 2006, p. 57
49. Vindigni,F., Manzoli,M., Tabakova,T., Idakiev,V., Boccuzzi,F., Chiorino,A.,, ” Gold catalysts for low temperature water-gas shift reaction: Effect of ZrO2 addition to CeO2 support” Applied Catalysis B: Environmental 125 (2012) 507–515
50. Letichevsky, S., Tellez, C. A., Avillez R. R., Silva, M. I. P., Fraga, M. A., Appel, L. G., “Obtaining CeO2–ZrO2 mixed oxides by coprecipitation: role of preparation conditions” Appl. Catal. B 58 (2005) 203-210.
51. Letichevsky,S., Tellez,C.A., de Avillez,R.R., da Silva,M.P., Fraga,M.A., Appel,R.R., “Obtaining CeO2–ZrO2 mixed oxides by coprecipitation:role of preparation conditions“Applied Catalysis B: Environmental 58 (2005) 203–210
52. Meunier, F. C., Yablonsky, G., Reid, D., Shekhtma, S.O., Hardacre, C., Burch, R., Lazman, M. “Negative Apparent Kinetic Order in Steady-State Kinetics of the Water-Gas Shift Reaction over a Pt–CeO2 Catalyst” Catal. Today 138 (2008) 216-221.
53. Kumar,L., Sarma,D.D., Krummacher,S., “xps study of the room temperature surface oxidation of zirconium and its binary alloys with tin, chromiumand iron” Applied Surface Science 32 (1988) 309-319
54. Casaletto, M.P., Longo, A., Martorana, A., Prestianni, A., Venezia, A.M., ” XPS study of supported gold catalysts: the role of Au0 and Au+d species as active sites”, Surf. Interface Anal. 38 (2006) 215–218
55. Yuana, Y., Asakurac, K., Kozlovaa, A.P., Wanb, H., Tsaib, K., Iwasawa,Y., ” Supported gold catalysis derived from the interaction of a Au±phosphine complex with as-precipitated titanium hydroxide and titanium oxide”, Catalysis Today 44 (1998) 333–342
56. Schubert, M.M., Plzak ,V., Garche, J., Behm, R. J. ”Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas” Catalysis Letters Vol. 76, No. 3–4, 2001
57. Burch,R.” Gold catalysts for pure hydrogen production in the water–gas shift reaction: activity, structure and reaction mechanism” Phys. Chem. Chem. Phys., 2006, 8, 5483–5500 |
58. Wang, H., Zhu, H., Qin, Z., Wang, G., Liang, F., Wang, J., ” deactivation of Au/CeO2–Co3O4 catalysts during CO Preferential oxidation in H2-rich stream” Journal of Catalysis 264 (2009) 154–162
59. Xu X.Y., Li, J.J., Hao ,Z.P.,” CeO2 –Co3O4 Catalysts for CO Oxidation” JOURNAL OF RARE EARTHS 24 (2006) 172 – 176
60. Grisel, R.J.H., Weststrate, C.J., Goossens, A., Crajé, M.W.J., Kraan, A.M., Nieuwenhuys, B.E., ” Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catalysis Today 72 (2002) 123–132
指導教授 陳郁文(Yu-wen Chen) 審核日期 2013-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明