博碩士論文 100324601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.133.127.132
姓名 蕭晴雪(Benjawan Moongraksathum)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Preparation of TiO2 and SiO2/TiO2 thin film, and its application on photocatalytic degradation of methylene blue)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前對於二氧化鈦-二氧化矽這類新型材料有著極大的興趣。本研究著重
在以過氧化溶膠凝膠法製備中性二氧化矽/二氧化鈦溶膠,其不同二氧化矽/二
氧化鈦重量比為3/1 與5/1 (分別表示為ST(3) 和ST(5) ),另外,也致力於
研究以含浸法(Dip-coating)製備ST 薄膜,將其放入亞甲基藍水溶液進行光催
化降解。結果發現,由於二氧化矽的存在,光穿透率增加,塗佈ST(5)薄膜之
玻璃與未塗佈之玻璃基材相比,其光穿透率增加了4%,然而,塗佈二氧化鈦之
玻璃則減少了5% 左右。在研究鈉由玻璃基材遷移至薄膜層上的二氧化矽遷移
屏障效果之前,薄膜先經過500 度C 熱處理1 小時。多層塗佈的二氧化矽-二
氧化鈦薄膜也製備出作為比較。可以觀察到ST(5) 薄膜上方有0.04 At% 的少
量鈉存在,而在多層塗層中鈉含量高達6.57 At%,但還是少於僅塗佈二氧化鈦
之薄膜。於光催化降解亞甲基藍水溶液的反應中,基於相同數量的鈦,存在二
氧化矽的薄膜可以增加光催化活性,其煅燒與未煅燒之ST(5) 薄膜速率常數分
別為3×10-3 min-1 和 1.518×10-3 min-1 (於 UVC (254 nm)下)。此外,ST(5) 薄
膜的光催化反應於UVA(365nm)燈管照射下也有活性。因此,此方法可以作為替
代的方式來生產具有高光穿透率的薄膜,其塗佈於玻璃上可以具有光穿透率,
同時保持良好的光催化活性。
摘要(英) At present titania-silica (TiO2-SiO2) has received a great interest as a novel class of materials. This study aims to investigate the synthesis of SiO2/TiO2 neutral sol at various SiO2/TiO2 weight ratios of 3/1 and 5/1 (denoted as ST(3) and ST(5), respectively) by peroxo sol-gel method, and also study on the photocatalytic degradation of methylene blue in water of ST films prepared by dip-coating technique. It was found that the transmittance increased along with the presence of silicon dioxide and could enhance the light transmittance up to 4% in case of ST(5) film when compared to the bare glass substrate, whereas the TiO2 film decreased at least 5% of transmittance. Prior to study the effect of the SiO2 migration barrier on sodium migration from substrate into the film layer, the films were treated at 500 oC for 1 hour. The multilayer coating of SiO2 and TiO2 (S/T) was also prepared for comparison. It could observe that ST(5) film could be detected a small amount of 0.04 At.% sodium content at the surface, whereas the multilayer coating showed the content of sodium up to 6.57 At.% but less than the bare TiO2. For the photocatalytic degradation of methylene blue aqueous solution, based on the same amount of Ti species, the presence of SiO2 in the film could enhance the phtocatalytic activity exhibiting the rate constant of 3×10-3 min-1 and 1.518×10-3 min-1 under UVC (254 nm) for calcined and uncalcined ST(5) films. In addition, the photocatalytic reaction of ST(5) film was also active under UVA illumination (365 nm). Thus, this method can be the alternative way to produce the film coating on substrate which possesses high light transmittance and also preserves high photocatalytic activity simultaneously.
關鍵字(中) ★ 二氧化矽/二氧化鈦薄膜
★ 溶膠凝膠法
★ 光觸媒降解
關鍵字(英) ★ SiO2/TiO2 film
★ peroxo sol-gel method
★ photocatalytic degradation
論文目次 TABLE OF CONTENTS
PAGE
ABSTRACT………………………………………………………………………… i
ACKNOWLEDGEMENTS……………………………………………………….. ii
TABLE OF CONTENTS…………………………………………………………... iii
LIST OF TABLES………………………………………………………………….. vi
LIST OF FIGURES…………………………………………………………………vii
CHAPTER I INTRODUCTION…………………………………………………... 1
CHAPTER II LITERATURE REVIEW…………………………………………. 5
2.1 Heterogeneous titanium dioxide (TiO2) photocatalysis………………….. 5
2.1.1 Polymorphs of TiO2……………………………………………. 5
2.1.2 Mechanistic study of TiO2 photocatalysis……………………... 7
2.2 Photo-induced superhydrophilicity………………………………………. 9
2.3 SiO2/TiO2 as photocatalyst, anti-reflection coating, and self-cleaning film…………………………………………………………………………… 12
2.3.1 Mechanism of SiO2 addition in TiO2 to improve the self-cleaning effect…………………………………………………………………. 13
2.3.2 Preparation methods of SiO2/TiO2 thin film…………………… 15
2.4 Heat treatment of films............................................................................... 19
2.4.1 Sodium contamination…………………………………………. 20
2.5 Band gap of films………………………………………………………… 22
CHAPTER III EXPERIMENTAL………………………………………………... 27
3.1 Materials…………………………………………………………………. 27
3.2 Methodology……………………………………………………………... 27
PAGE
3.2.1 Synthesis of TiO2 and SiO2/TiO2 sols………………………….. 27
3.2.2 Preparation of TiO2 and SiO2/TiO2 films…………………………… 29
3.2.3 Photocatalytic activity…………………………………………. 30
3.3 Characterization techniques……………………………………………… 33
3.3.1 Transmission Electron Microscopy (TEM) and High-resolution Electron Microscopy (HRTEM)……………………………………... 33
3.3.2 X-Ray Photoelectron Spectroscopy (XPS)…………………….. 34
3.3.3 Scanning Electron Microscopy (SEM)……………………….... 34
3.3.4 X-Ray Diffraction (XRD)……………………………………… 35
3.3.5 UV-Visible Spectrophotometer………………………………... 37
3.3.6 Photocatalytic Reactor…………………………………………. 38
CHAPTER IV PREPARATION OF TITANIUM DIOXIDE AND SILICON DIOXIDE-TITANIUM DIOXIDE MIXED OXIDE THIN FILM, AND ITS APPLICATION ON PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE…………………………………………………………….... 39
4.1 Abstract……………………………………………………………........... 39
4.2 Introduction……………………………………………………………… 39
4.3 Experimental and Methodology……………………………………………... 41
4.3.1 Materials……………………………………………………………… 41
4.3.2 Synthesis of TiO2 and SiO2/TiO2 sols………………………….. 42
4.3.3 Preparation of TiO2 and SiO2/TiO2 films………………………. 42
4.3.4 Photocatalytic activity………………………………………….. 43
4.3.5 Characterization techniques……………………………………. 44
PAGE
4.4 Results and discussion…………………………………………………… 45
4.4.1 Characteristics of TiO2 and SiO2/TiO2 sols……………………. 45
4.4.2 Characterization of TiO2 and SiO2/TiO2 sols…………………... 46
4.4.3 Characteristic of TiO2 and SiO2/TiO2 thin films……………….. 52
4.4.4 Effect of SiO2 migration barrier on sodium migration………… 62
4.4.5 Characteristic of films after annealing at high temperature……. 64
4.4.6 Photocatalytic degradation of methylene blue in water………... 67
4.5 Conclusions……………………………………………………………… 73
REFERENCES…………………………………………………………………….. 74
參考文獻 Ahn, Y.U.; Kim, E.J.; Kim, H.T.; Hahn, S.H. Variation of structure and optical properties of sol-gel TiO2 thin films with catalyst concentration and calcinations temperature. Mater. Lett. 2003, 57, 4660-4666.
Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529.
Anderson, C.; Bard, A.J. An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 1995, 99, 9882-9885.
Anderson, C.; Bard, A.J. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J. Phys. Chem. B 1997, 101, 2611-2616.
Arconada, N.; Durán, A.; Suárez, S.; Portela, R.; Coronado, J.M.; Sánchez, B.; Castro, Y. Synthesis and photocatalytic properties of dense and porous TiO2-anatas thin films prepared by sol-gel. Appl. Catal., B 2009, 86, 1-7.
Bellardita, M.; Addamo, M.; Paola, A.D.; Marcì, G.; Palmisano, L.; Cassar, L.; Borsa, M. Photocatalytic activity of TiO2/SiO2 systems. J. Hazard. Mater. 2010, 174, 707–713.
Chong, M.N.; Jin, B.; Chow, C.; Saint, C. Recent development in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997-3027.
Dagan, G.; Sampath, S.; Lev, O. Preparation and utilization of organically modified silica-titania photocatalysts for decontamination of aquatic environments. Chem. Mater. 1995, 7, 446-453.
Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53-229.
Fujishima, A.; Rao, T.N. Recent advances in heterogeneous TiO2 photocatalysis. Proc. Indian Acad. Sci. (Chem. Sci.) 1997, 109 (6), 471-486.
Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 2000, 1, 1-21.
Gao, X.; Wachs, I.E. Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Cat. Today 1999, 51, 233-254.
Guan, K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Technol. 2005, 191, 155-160.
—
Guan, K.; Lu, B.; Yin, Y. Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films. Surf. Coat. Technol. 2003, 173, 219–223.
Guglielmi, M.; Zenezini, S. The thickness of sol-gel silica coatings obtained by dipping. J. Non-Cryst. Solids 1990, 121, 303-309.
Hasan, M.M.; Haseeb, A.D.M.A.; Saidur, R.; Masjuki, H.H. Effects of annealing treatment on optical properties of anatase TiO2 thin film. Int. J. Chem. Biol. Eng. 2008, 1(2), 92-95.
Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 44 (12), 8269–8285.
He, C.; Tian, B.; Zhang, J. Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J. Colloid Interface Sci. 2010, 344, 382-389.
Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.; Herrmann, M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 2001, 31, 145-157.
Houmard, M.; Riassetto, D.; Roussel, F.; Bourgeois, A.; Berthomé, G.; Joud, J.C.; Langlet, M. Morphology and natural wettability properties of sol–gel derived TiO2–SiO2 composite thin films. Appl. Surf. Sci. 2007, 254, 1405–1414.
Huang, C.H.; Bai, H.L.; Huang, Y.L.; Liu, S.L.; Tseng, Y.H. Synthesis of neutral SiO2/TiO2 hydrosol and its photocatalytic degradation of nitric oxide gas. Micro Nano Lett. 2011, 6 (8), 646–649.
Huang, C.H.; Bai, H.L.; Huang, Y.L.; Liu, S.L.; Yen, S.; Tseng, Y.H. Synthesis of neutral SiO2/TiO2 hydrosol and its application as antireflective self-cleaning thin film. Int. J. Photoenergy 2012, 1-8.
Kamat, P.V. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 2012, 3, 663-672.
Kim, C.; Choi, M.; Jang, J. Nitrogen-doped SiO2/TiO2 core/shell nanoparticles as highly efficient visible light photocatalyst. Catal. Commun. 2010, 11, 378-382.
—
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
Lassaletta, G.; Fernández, A.; Espinós, J.P.; González-Elipe, A.R. Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition. J. Phys. Chem. 1995, 99, 1484-1490.
Lee, D.; Rubner, M.F.; Cohen, R.E. All-nanoparticle thin-film coatings. Nano Lett. 2006, 6 (10), 2305-2312.
Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758.
— .
López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7.
—
Machida, M.; Norimoto, K.; Watanabek, T.; Hashimoto, K.; Fujishima, A. The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. J. Mater. Sci. 1999, 34, 2569 – 2574.
Malagutti, A.R.; Mourão, H.; Garbin, J.R.; Ribeiro, C. Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal., B 2009, 90, 205-212.
Mills, A.; Wang, J.; Ollis, D.F. Kinetics of liquid phase semiconductor photoassisted reactions: supporting observations for a peudo-steady-state model. J. Phys. Chem. B 2006, 110, 14386-14390.
—
Mukhopadhyay, S.M.; Garofalini, S.H.; Surface studies of TiO2-SiO2 glasses by X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 1990, 126, 202-208.
Nam, H.-J.; Amemiya, T.; Murabayashi, M.; Itoh, K. Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates: the effects of Na+ and primary particle size. J. Phys. Chem. B 2004, 108, 8254-8259.
—
Ni, M.; Leung, M.; Leung, D.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 2007, 11, 401-425.
Nie, X.; Zhuo, S.; Maeng, G.; Sohlberg, K. Doping of TiO2 polymorphs for altered optical and photocatalytic properties. Int. J. Photoenergy 2009, Article ID 294042, 1-22.
Niishiro, R.; Kudo, A. Development of visible-light-driven TiO2 and SrTiO3 photocatalysts doped with metal cations for H2 or O2 evolution. Solid State Phenom. 2010, 162, 29-40.
Novotna, P.; Krysa, J.; Maixner, J.; Kluson, P.; Novak, P. Photocatalytic activity of sol–gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surf .Coat. Technol. 2010, 204, 2570–2575.
Saha, S.; Wang, J.M.; Pal, A. Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Sep. Purif. Technol. 2012, 89, 147-159.
Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J. Phys. Chem. B 2003, 107, 1028-1035.
Sasirekha, N.; Rajesh, B.; Chen, Y.W. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent. Thin Solid Films 2009, 518, 43-48.
Sato, S.; Kadowaki, T.; Yamaguti, K. Photocatolyitc oxygen isotopic exchange of TiO2 prepared from titanium hydroxide. J. Phys. Chem. 1984, 88, 2930-2931.
—
Shie, J.L.; Chang, C.Y.; Chiou, C.S.; Chen, Y.H.; Chen, Y.H.; Chen, Y.W.; Chang, C.C. Photocatalytic reduction of gaseous and solution CO2 to energy products using Ag/TiO2 and Cu/TiO2 in CuCl2 solution. Sustain. Environ. Res. 2012, 22 (4), 237-246.
—
Sreemany, M.; Sen, S. A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Mater. Chem. Phys. 2004, 83, 169-177
Stakheev, A.Y.; Shpiro, E.S.; Apijok, J. XPS and XAES study of TiO2-SiO2 mixed oxide system. J. Phys. Chem. 1993, 97, 5668-5672.
Tauc, J.; Grigorovic, R.; Vanc, A. Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 1996, 15, 627-637.
Tanabe, K.; Sumiyoshi, T.; Shibata, K. A new hypothesis regarding the surface acidity of binary metal oxides. B. Chem. Soc. Jpn. 1974, 47 (5), 1064-1066.
—
Teoh, W.Y.; Scott, J.A.; Amal, R. Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 2012, 3, 629-639.
Tian, G.L.; He, H.B.; Shao, J.D. Effect of microstructure of TiO2 thin films on optical band gap energy. Chin. Phys. Lett. 2005, 22 (7), 1787-1789.
—
Tseng, Y.H. ; Lin, H.Y.; Kuo, C.S.; Li, Y.Y.; Huang, C.P. Thermostability of nano-TiO2 and its photocatalytic activity. React. Kinet. Catal. Lett. 2006, 89 (1), 63−69.
Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.
Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater. 1998, 10 (2), 135-138.
Yaghubi, H.; Taghavinia, N.; Alamdari, E.K. Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties. Surf. Coat. Tech. 2010, 2004, 1562–1568.
Yu, J.; Wang, W.; Cheng, B.; Huang, B.; Zhang, X. Preparation and photocatalytic activity of multi-modally macro/mesoporous titania. Res. Chem. Intermed. 2009, 35, 653-665.
Yu, J.; Zhao, X. Effect of substrates on the photocatalytic activity of nanometer TiO2 thin film. Mater. Res. Bull. 2000, 35, 1293-1301.
Yu, J.C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808-3816.
Yu, J.G.; Yu, H.G.; Cheng, B.; Zhao, X.J.; Yu, J.C.; Ho, W.K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 2003, 107, 13871-13879.
Yu, J.G.; Yu, H.G.; Cheng, B.; Zhou, M.H.; Zhao, X.J. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J. Mol. Catal. A: Chem. 2006, 253, 112-118.
Zhang, X.; Fujishima, A.; Jin, M.; Emeline, A.V.; Murakami T. Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties. J. Phys. Chem. B 2006, 110, 25142-25148.
Zhao, B.; Chen, Y.W. Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity. J. Phys. Chem. Solids 2011, 72, 1312–1318.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2013-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明