博碩士論文 100522037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.142.53.191
姓名 黃惠慈(Hui-Tzu Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 探討學生對行動式立即反饋系統的 科技接受行為-以創意學習為例
(Investigate students’ technology acceptance behavior to mobile interactive response system. - A case study in creative learning course.)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在過去幾年,電腦輔助學習系統和網頁輔助學習系統已經被大量發展。許多研究證明電腦輔助學習系統和網路輔助學習系統確實能有效提升學習者的學習成效和動機,如果學習環境中可以透過學習輔助即時提出問題並迅速獲得反饋結果,將能更進一步提升學習者的學習成效。因此本研究提出行動式立即反饋系統來輔助學習,藉由科技接受模型2來探討此系統的使用者行為並且透過迴歸分析來驗證。實驗結果指出研究模型中的八個假說有六個假說是支持的,這六個假說分別是主觀規範、認知易用性、認知有性均會正向影響使用意圖; 且主觀規範、輸出品質會正向影響認知有用性; 認知易用性也會正向影響認知有用性。而工作關聯性與認知有用性因為兩變項間彼此沒有達到顯著相關,成果展示性與認知有用性亦沒有達到顯著相關,因此假說不支持。
摘要(英) In the past few years,there were numerous computer-assisted learning systems and web-assisted learning systems have been greatly developed. Many studies confirmed that computer-assisted learning systems and web-assisted learning systems could improve learners’ learning performance and motivation effectively. In learning environment, if learners could ask questions instantly and got feedback quickly through learning tools, then learning performance would be further enhanced. Therefore, this study proposed mobile interactive response system to assist students’ learning. Used Technology acceptance model 2 to probe into user behaviors. And hypotheses were validated through regression analysis. The results showed that there were six hypotheses supported in the proposed eight hypotheses. These six hypotheses included subjective norm, perceived ease of use and perceived usefulness could positively impact on intention to use. Subjective norm, output quality could positively impact on perceived usefulness. Perceived ease of use could positively impact on perceived usefulness. On the other hand, job relevance and perceived usefulness had no significant correlation. Result demonstrability and perceived usefulness had no significant correlation too. Thus these two hypotheses were not supported.
關鍵字(中) ★ 行動式
★ 立即反饋系統
★ 科技接受模型2
關鍵字(英) ★ Mobile
★ Interactive response system
★ Technology acceptance model 2
論文目次 中文摘要 i
ABSTRACT ii
致謝 iii
目錄 v
圖目錄 vii
表目錄 ix
一、 緒論 1
二、 文獻探討 4
2-1立即反饋系統(IRS) 4
2-2科技接受度理論 6
2-2-1理性行為理論 6
2-2-2科技接受模型 8
2-2-3科技接受模型2 9
三、 行動式立即反饋系統 12
3-1網頁操作介面 12
3-1-1登入區 12
3-1-2頻道區 12
3-1-3出題區 13
3-1-4統計區 14
3-2行動裝置操作介面 15
3-2-1 Android 版-登入區 15
3-2-2 Android 版-頻道區 16
3-2-3 Android 版-題目區 17
3-2-4 Android 版-投票區 18
3-2-5 iOS 版-登入區 19
3-2-6 iOS 版-頻道區 19
3-2-7 iOS 版-題目區 20
3-2-8 iOS 版-投票區 21
四、 研究方法 22
4-1研究模型與假說 22
4-2科技接受問卷 24
4-3實驗活動 27
4-3-1系統使用教學 27
4-3-2觀看創意學習影片 27
4-3-3針對影片進行問題討論及意見交換 27
4-3-4填寫科技接受度問卷 28
五、 結果與討論 29
5-1描述性統計 29
5-2相關分析 30
5-3迴歸分析 32
5-4開放式問答結果 39
六、 結論 41
參考文獻 42
附錄一 49
附錄二 50
參考文獻 Abrahamson, L. (2006). A brief history of networked classrooms: Effects, cases, pedagogy, and implications. In D. A. Banks (Ed.), Audience response systems in higher education (pp. 1–25). Hershey, PA: Information Science Publishing.
Aiken, L. R. (1983). Number of response categories and statistics on a teacher rating scale. Educational and Psychological Measurement, 43(2), 397-401.
Allen, D., & Tanner, K. (2005). Infusing active learning into the large-enrolment biology class: Seven strategies, from the simple to complex. Cell Biology Education, 4, 262–268.
AJZEN, I. AND M. FiSHBEIN, Understanding Attitudes and Predicting Social Behavior. Prentice-Hall, Englewood Cliffs, NJ, 1980.
Barber, M., & Njus, D. (2007). Clicker evolution: seeking intelligent design. CBE—Life Sci. Educ., 6, 1-8.
Beatty, I. (2004). Transforming student learning with classroom communication systems. EDUCAUSE Research Bulletin, (3), 2004, 1–13. Retrieved Nov 3, 2007 from .
Bergtrom, G. (2006). Clicker sets as learning objects. Interdisciplinary Journal of Knowledge and Learning Objects, 2. Retrieved Nov 3, 2007 from .
Blasco-Arcas, Lorena, Buil, Isabel, Hernández-Ortega, Blanca, & Sese, F. Javier. (2013). Using clickers in class. The role of interactivity, active collaborative learning and engagement in learning performance. Computers & Education, 62, 102-110.
Bode, M., Drane, D., Kolikant, Y. B. D., & Schuller, M. (2009). A clicker approach to teaching calculus. Notices of the AMS, 56(2), 253–256.
Brady, Melanie, Seli, Helena, & Rosenthal, Jane. (2013). "Clickers" and metacognition: A quasi-experimental comparative study about metacognitive self-regulation and use of electronic feedback devices. Computers & Education, 65, 56-63.
Brewer, C. (2004). Near real-time assessment of student learning and understanding in biology courses. BioScience, 54(11), 1034-1039.
Brown, G. , Widing, R.E.II, and Coulter, R.L. (1991). Customer evaluation of retail salespeople utilizing the SOCO scale: Replication, extension, and application. Journal of Academy of Marketing Science, 9, 347-351.
Bullock, D. W., LaBella, V. P., Clinghan, T., Ding, Z., Stewart, G., & Thibado, P. M. (2002). Enhancing the student-instructor interaction frequency. The Physics Teacher, 40, 30–36.
Caldwell, Jane E. (2007). Clickers in the Large Classroom: Current Research and Best-Practice Tips. Life Sciences Education, 6(1), 9-20.
Chan, S.C., & Lu, M.T. (2004). Understanding Internet Banking Adoption and Use Behavior : A Hong Kong Perspective. Journal of Global Information Management, 12(3), 21-43.
Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American Journal of Physics, 69(9), 970–977.
Cue, N. (1998, December). A universal learning tool for classrooms. Paper presented at the In Proceedings of the First Quality in Teaching and Learning Conference.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22, 1111-1132.
Draper, S. W., & Brown, M. I. (2004). Increasing interactivity in lectures using an electronic voting system. Journal of Computer Assisted Learning, 20(2), 81–94.
Fagan, A. P., Crouch, C. H., & Mazur, E. (2002). Peer instruction: Results from a range of classrooms. The Physics Teacher, 40(4), 206–209.
El-Rady, J. (2006). To click or not to click: That’s the question. Innovate Journal of Online Education, 2(4). Retrieved Nov 3, 2007 from .
Fies, C., & Marshall, J. (2006). Classroom response systems: A review of the literature. Journal of Science Education and Technology, 15(1), 101-109.
FISHBEIN, M. AND I. AJZEN, Belief, Attitude, Intention and Behavior: An Introdluction to Theorv and Research, Addison-Wesley, Reading, MA, 1975.
Greer, L., & Heaney, P. J. (2004). Real-time analysis of student comprehension: An assessment of electronic student response technology in an introductory earth science course. Journal of Geoscience Education, 52(4), 345–351.
Herrington, J., & Oliver, R. (2000). An instructional design framework for authentic learning environments. Educational Technology Research & Development, 48(3), 23-48.
Hoekstra, A. (2008). Vibrant student voices: exploring effects of the use of clickers in, large college courses. Learning, Media and Technology, 33(4), 329–341.
Huang, Y. M., Lin, Y. T., & Cheng, S. C. . (2009). An adaptive testing system for supporting versatile educational assessment. Computers & Education, 52(1), 53-67.
Hwang, G. J., Chu, H. C., Shih, J. L., Huang, S. H., & Tsai, C. C. (2010). A decision-tree-oriented guidance mechanism for conducting nature science observation activities in a context-aware ubiquitous learning environment. Educational Technology & Society, 13(2), 53-64.
Jackson, M., Ganger, A. C., Bridge, P. D., & Ginsburg, K. (2005). Wireless handheld computers in the undergraduate medical curriculum. Medical Education Online, 10(5). Retrieved Nov 3, 2007 from .
James, M. C., & Willoughby, S. (2011). Listening to students conversations during clicker questions: what you have not heard might surprise you. American Journal of Physics,79(1), 123.
Judson, E., & Sawada, D. (2002). Learning from past and present: Electronic response systems in college lecture halls. Journal of Computers in Mathematics and Science Teaching, 21(2), 167-181.
Kaleta, R., & Joosten, T. (2007). Student response systems: A University of Wisconsin system study of clickers. EDUCAUSE Research Bulletin, 2007(10), 1–12.
Kay, Robin H. (2009). Examining gender differences in attitudes toward interactive classroom communications systems (ICCS). Computers & Education 52, 730-740.
Kay, Robin H., & LeSage, Ann. (2009). Examining the benefits and challenges of using audience response systems: A review of the literature. Computers & Education(53), 819–827.
Kelman, H. C. (1985). Compliance, identification, and internalization: Three processes of attitude change. . The Journal of Conflict Resolution, 2(1), 51-60.
Kennedy, G. E., & Cutts, Q. I. (2005). The association between students’ use of electronic voting systems and their learning outcomes. Journal of Computer Assisted Learning, 21(4), 260–268.
Kieras, D.E., & Polson, P.G. . (1985). An Approach to the Formal Analysis of User Complexity. . International Journal of Man-Machine Studies, 22, 365-394.
Latessa, R., & Mouw, D. (2005). Use of audience response system to augment interactive learning. Family Medicine, 37(1), 12–14. Retrieved Nov 3, 2007 from .
Leng, B. A.de, Dolmans, D. H. J. M., Jöbsis, R. , Muijtjens, A. M. M., & Vleuten, C. P. M.van der. (2009). Exploration of an e-learning model to foster critical thinking on basic science concepts during work placements. Computers & Education, 53(1), 1-13.
Lin, C. F. (2005). A Study of Customer Intention and Its Antecedents on e-Commerce of Travel industry. (Master Thesis), Dong Hwa Hualien, Taiwan.
Ma, W. W.-K., Andersson, R., & Streith, K.-O. (2005). Examining user acceptance of computer technology: an empirical study of student teachers. Journal of Computer Assisted Learning, 21, 387–395.
MacGeorge, E. L., Homan, S. R., Dunning, J. B., Elmore, D., Bodie, G. D., Evans, E., et al. (2008). Student evaluation of audience response technology. Educational Technology Research and Development, 56, 125–145.
MASTERS, E. R. (1974). THE RELATIONSHIP BETWEEN NUMBER OF RESPONSE CATEGORIES AND RELIABILITY OF LIKERT‐TYPE QUESTIONNAIRES1. Journal of Educational Measurement, 11(1), 49-53.
Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2, 192-222.
Morin, D., Thomas, J. D. E., Barrington, J., Dyer, L., & Boutchkova, M. (2009). The “clicker” project: a scholarly approach to technology integration. In P. Daly, & D. Gijbels (Eds.). Real learning opportunities at business school and beyond: Advances in business education and training, Vol. 2(1) (pp. 97–107).
Nicol, D. J., & Boyle, J. T. (2003). Peer instruction versus class-wide discussion in large classes: A comparison of two interaction methods in the wired classroom. Studies in Higher Education, 28(4), 457–473.
Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. Educational Technology & Society, 12(3), 150–162.
Parsons, C. V., & DeLucia, J. M. (2005). Decision Making in the Process of Making Differentiation. Learning & Leading with Technology, 33(1), 8-10.
Pena-Shaffa, J. B., & Nichollsb, C. (2004). Analyzing student interactions and meaning construction in computer bulletin board discussions. Computers & Education, 42(3), 243-265.
Polson, P. G. (1987, January). A quantitative theory of human-computer interaction. In Interfacing thought: cognitive aspects of human-computer interaction (pp. 184-235). MIT Press.
Pradhan, A., Sparano, D., & Ananth, C. V. (2005). The influence of an audience response system on knowledge retention: An application to resident education. American Journal of Obstetrics and Gynecology, 193(5), 1827–1830.
Prather, E., & Brissender, G. (2009). Clickers as data gathering tools and students’ attitudes, motivations, and beliefs on their use in this application. Astronomy Education Review, 8, 010103–1, 10.3847/AER2009004.
Preszler, R. W., Dawe, A., Shuster, C. B., & Shuster, M. (2007). Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses. CBE-Life Sciences Education, 6(1), 29–41.
Roschelle, J., Penuel, W. R., & Abrahamson, L. (2004). The networked classroom. Educational Leadership, 61(5), 50-54.
Sharma, M. D., Khachan, J., Chan, B., & O’Byrne, J. (2005). An investigation of the effectiveness of electronic classroom communication systems in large lectures. Australasian Journal of Educational Technology, 21(2), 137–154.
Simpson, V., & Oliver, M. (2007). Electronic voting systems for lectures then and now: A comparison of research and practice. Australasian Journal of Educational Technology, 23(2), 187-208.
Siau, K., Sheng, H., & Nah, F. (2006). Use of a classroom response system to enhance classroom interactivity. IEEE Transactions on Education, 49(3), 398–403.
Stuart, S. A. J., Brown, M. I., & Draper, S. W. (2004). Using an electronic voting system in logic lectures: One practitioner’s application. Journal of Computer Assisted Learning, 20(2), 95–102.
Taylor, Shirley, & Todd, Peter. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4), 561-570.
Tseng, J. C. R. , Chu, H. C., Hwang, G. J., & Tsai, C. C. . (2008). Development of an adaptive learning system with two sources of personalization information. Computers & Education, 51(2), 776-786.
Uhari, M., Renko, M., & Soini, H. (2003). Experiences of using an interactive audience response system in lectures. BMC Medical Education, 3(12), 1–6.
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204.
Wang, W.-T., & Wang, C.-C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53, 761–774.
Warshaw, P. R. (1980). A new model for predicting behavioral intentions: An alternative to Fishbein. Journal of Marketing Research, 153-172.
Yeh, Y. F., Chen, M. C., Hung, P. H., & Hwang, G. J. . (2010). Optimal self-explanation prompt design in dynamic multi-representational learning environments. Computers & Education, 54(4), 1089-1100.
Yuen, A. H. K., & Ma, W. W. K. (2008). Exploring teacher acceptance of e-learning technology. Asia-Pacific Journal of Teacher Education, 36(3), 229–243.
吳毓瑩. (1996). 量表奇偶點數的效度議題. 調查研究-方法與應用, 2, 5-34.
指導教授 楊鎮華 審核日期 2013-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明