博碩士論文 965401013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.117.129.72
姓名 林耿呈(Geng-Cheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於模糊邏輯之多頻譜MRI影像切割與分類研究
(The Study on Multispectral MR Images Segmentation and Classification Based on Fuzzy Logic)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 核磁共振技術(Magnetic Resonance Imaging, MRI)為現今臨床上重要的檢測技術,其核磁共振技術最大優點是對人體不具侵襲性,且可以多方向掃描,並提供三度空間、高對比度的影像。可有利於醫師對疾病的診斷更加準確,以提高治療的正面效果。當一病人被安排做MRI造影後,對人體某一器官切面部位,會產生一系列的多頻譜影像(multispectral image)。如果把一系列的切面影像疊在一起組合而成後,便形成人體一個立體的三維結構。醫師就藉由這個立體結構得到一些醫學診斷的資訊,如器官的形狀、位置與體積大小。雖然經由多頻譜影像可獲得更多的資訊,但也造成病理判讀上的困擾。因此,我們將這些多頻譜影像經過精準的轉換法處理後,形成單一強化組織影像讓醫生更容易的對病理做診斷。
此篇論文提出了一個新特徵自我選取的方法,Target Generation Process(TGP)。並將TGP合併於Linear Discriminant Analysis (LDA)、Constrained Energy Minimization (CEM) filter 與 Fuzzy Knowledge Based Seeded Region Growing (FKSRG)三個方法中。其中我們稱此前兩方法為TGP Linear Discriminant Analysis (TGP+LDA) 與 TGP Constrained Energy Minimization (TGP+CEM)。而TGP可幫助FKSRG改善區域合併(Regions Merging)時的不確定性,利用這些方法來強化出腦中的CSF(Cerebrospinal Fluid)、白質(White Matter)以及灰質(Gray Matter)三大組織,使醫生做診斷時更加有效率。因此我們的工作即在研究如何從多頻譜MRI影像中,將腦部的主要組織(如CSF、WM、GM)給強化出來,更進一步的發展是可將腦腫瘤明確的強化與切割出來。最後我們將加入常見的FMRIB’s Automated Segmentation Tool (FAST) 、 Fuzzy C-means (FCM) 與 C-means (CM)等方法來進行比較,並且提出一套方法來評比這些方法的可行性與強健性
摘要(英) Magnetic Resonance Imaging (MRI) is a useful medical instrument in medical science. It provides unparallel capability of revealing soft tissue characterization as well as 3-D visualization and proposes the diagnosis without needing to intrude into the human body. MRI produces a sequence of multiple spectral images of tissues with a variety of contrasts, but the multispectral images cannot be conveniently used to be a pathology diagnosis correctly. In general, we need to transform the multispectral images to an enhanced image, which is easier to be used for doctor’s clinical diagnosis. One of the potential applications of MRI in clinical practice is the brain parenchyma classification.
In this dissertation, we present an automatic feature selection method called Target Generation Process (TGP) and combine it with Linear Discriminant Analysis (LDA), Constrained Energy Minimization (CEM) filter and Fuzzy Knowledge Based Seeded Region Growing (FKSRG) to automatically enhance, classify and segment the three major tissues, i.e. gray matter (GM), white matter (WM) and cerebral spinal fluid (CSF), from a multispectral MR image of the human brain. The TGP is a fuzzy-set process that generates a set of potential targets from unknown information and then the targets are applied into LDA, CEM and FKSRG methods. It can support LDA and CEM to become the TGP+LDA, TGP+CEM filter. In conventional regions merging of Seeded Region Growing (SRG) algorithm, the final number of regions is unknown. Therefore, TGP is proposed and applied to support conventional regions merging, such that the FKSRG method does not produce over or under segment images. Finally, two images sets, namely, computer-generated phantom images and real MR images, are used in experiments to assess the effectiveness of the proposed methods. Experimental results demonstrate that proposed methods segment multispectral MR images much more effectively than the FMRIB’s Automated Segmentation Tool (FAST), Fuzzy C-means (FCM) and C-means (CM) methods.
關鍵字(中) ★ 核磁共振影像
★ 模糊邏輯
★ 多頻譜
★ 切割
★ 分類
★ 模糊
關鍵字(英) ★ MRI
★ Fuzzy Logic
★ Multispectral
★ Segmentation
★ Classification
★ Fuzzy
論文目次 摘要 I
Abstract II
誌謝 III
Contents IV
List of Figures VI
List of Tables IX
Chapter 1 Introduction 1
1.1 Motivation and Background 1
1.2 Review of Previous Works 3
1.3 Organization and Main Tasks 6
Chapter 2 The Source of Images 9
2.1 Introduction 9
2.2 Phantom Images 9
2.3 Real Multispectral MR images 11
2.3.1 Real MR Images without Tumor 11
2.3.2 Real MR Images with Tumor 16
Chapter 3 The Algorithms 18
3.1 Introduction 18
3.2 Target Generation Process (TGP) 19
3.3 TGP Linear Discriminant Analysis (TGP+LDA) 31
3.4 TGP Constrained Energy Minimization (TGP+CEM) 37
3.4.1 Constrained Energy Minimization (CEM) 38
3.4.2 Type-1 TGP+CEM and Type-2 TGP+CEM 40
3.5 Fuzzy Knowledge Based Seeded Region Growing (FKSRG) 45
3.5.1 Fuzzy Edge Determination 47
3.5.2 Fuzzy Similarity Computation 51
3.5.3 Modified Seeded Region Growing 52
3.6 C-means (CM), Fuzzy C-means (FCM) and FMRIB’s Automated Segmentation Tool (FAST) 58
Chapter 4 Experimental Results and Comparison 59
4.1 Introduction 59
4.2 Phantom Images Experiment 60
4.2.1 Abundance Percentage Thresholding Scheme 66
4.2.2 Receiver Operating Characteristic (ROC) Analysis 67
4.3 Real MR Image experiments 77
4.3.1 Real MR Images without Tumor 77
4.3.2 Real MR Images with Tumor 85
Chapter 5 Conclusions and Future Works 88
5.1 Conclusions 88
5.2 Future Works 90
Bibliographies 91
Publication List 98
Journal Paper 98
Conference Paper 98
專利 99
參考文獻 [1] G. Sebastiani and P. Barone, "Mathematical principles of basic Magnetic-Resonance-Imaging in medicine," Signal Processing, vol. 25, pp. 227-250, Nov 1991.
[2] G. A. Wright, "Magnetic resonance imaging," IEEE Signal Processing Magazine, vol. 14, pp. 56-66, Jan 1997.
[3] C. M. Wang, C. C. C. Chen, S. C. Yang, P. C. Chung, Y. N. Chung, C. W. Yang, et al., "Unsupervised orthogonal subspace projection approach to magnetic resonance image classification," Optical Engineering, vol. 41, pp. 1546-1557, Jul 2002.
[4] C. M. Wang, S. C. Yang, P. C. Chung, C. I. Chang, C. S. Lo, C. C. Chen, et al., "Orthogonal subspace projection-based approaches to classification of MR image sequences," Computerized Medical Imaging and Graphics, vol. 25, pp. 465-476, Nov-Dec 2001.
[5] C. M. Wang, C. C. C. Chen, Y. N. Chung, S. C. Yang, P. C. Chung, C. W. Yang, et al., "Detection of spectral signatures in multispectral MR images for classification," IEEE Transactions on Medical Imaging, vol. 22, pp. 50-61, Jan 2003.
[6] C. M. Wang, G. C. Lin, C. Y. Lin, and R. M. Chen, "An unsupervised Kalman filter-based linear mixing approach to MRI classification," in 2004 IEEE Asia-Pacific Conference on Circuits and Systems, Tainan (Taiwan ROC), 2004, pp. 1105-1108.
[7] W. E. Reddick, J. O. Glass, E. N. Cook, T. D. Elkin, and R. J. Deaton, "Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks," IEEE Transactions on Medical Imaging, vol. 16, pp. 911-918, Dec 1997.
[8] J. Alirezaie, M. E. Jernigan, and C. Nahmias, "Automatic segmentation of cerebral MR images using artificial neural networks," IEEE Transactions on Nuclear Science, vol. 45, pp. 2174-2182, Aug 1998.
[9] J. S. Lin, R. M. Chen, and Y. M. Huang, "Medical image segmentation using mean field annealing network," in IEEE International Conference on Image Processing, Washingtom, D.C. (USA), 1997, pp. 855-858.
[10] J. S. Lin, K. S. Cheng, and C. W. Mao, "Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network," International Journal of Bio-Medical Computing, vol. 42, pp. 205-214, Aug 1996.
[11] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, "A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data," IEEE Transactions on Medical Imaging, vol. 21, pp. 193-199, Mar 2002.
[12] K. H. Chuang, M. J. Chiu, C. C. Lin, and J. H. Chen, "Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means," IEEE Transactions on Medical Imaging, vol. 18, pp. 1117-1128, Dec 1999.
[13] Y. Zhao and M. Li, "A modified fuzzy c-means algorithm for segmentation of MRI," in Fifth International Conference on Computational Intelligence and Multimedia Applications, Xi’an (China), 2003, pp. 391-395.
[14] M. N. Ahmed, S. M. Yamany, A. A. Farag, and T. Moriarty, "Bias field estimation and adaptive segmentation of MRI data using a modified fuzzy C-means algorithm," in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO.(USA), 1999, pp. 23-25.
[15] N. A. Mohamed, M. N. Ahmed, and A. A. Farag, "Modified fuzzy c-mean in medical image segmentation," in IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, Arizona(USA), 1999, pp. 3429-3432.
[16] M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, F. R. Murtagh, and M. S. Silbiger, "Automatic tumor segmentation using knowledge-based techniques," IEEE Transactions on Medical Imaging, vol. 17, pp. 187-201, Apr 1998.
[17] M. Rousson, C. Lenglet, and R. Deriche, "Level set and region based surface propagation for diffusion tensor MRI segmentation," Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, vol. 3117, pp. 123-134, 2004.
[18] D. Rivest-Henault and M. Cheriet, "Unsupervised MRI segmentation of brain tissues using a local linear model and level set," Magnetic Resonance Imaging, vol. 29, pp. 243-259, Feb 2011.
[19] W. Liu, M. Gach, and D. Ruan, "Reconstructing Motion Manifold From Real-Time MRI: A Level Set Approach," Medical Physics, vol. 39, pp. 3922-3922, Jun 2012.
[20] C. M. Li, R. Huang, Z. H. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, "A Level Set method for image segmentation in the presence of intensity inhomogeneities with application to MRI," IEEE Transactions on Image Processing, vol. 20, pp. 2007-2016, Jul 2011.
[21] L. Jonasson, P. Hagmann, C. Pollo, X. Bresson, C. R. Wilson, R. Meuli, et al., "A level set method for segmentation of the thalamus and its nuclei in DT-MRI," Signal Processing, vol. 87, pp. 309-321, Feb 2007.
[22] L. Jonasson, P. Hagmann, X. Bresson, J. P. Thiran, and V. J. Wedeen, "Representing diffusion MRI in 5D for segmentation of white matter tracts with a level set method," Information Processing in Medical Imaging, Proceedings, vol. 3565, pp. 311-320, 2005.
[23] J. Hwang, Y. Han, and H. Park, "Skull-Stripping method for brain MRI using a 3D level set with a speedup operator," Journal of Magnetic Resonance Imaging, vol. 34, pp. 445-456, Aug 2011.
[24] O. Colliot, T. Mansi, N. Bernasconi, V. Naessens, D. Klironomos, and A. Bernasconi, "Segmentation of focal cortical dysplasia lesions on MRI using level set evolution," Neuroimage, vol. 32, pp. 1621-1630, Oct 1 2006.
[25] E. D. Angelini, T. Song, B. D. Mensh, and A. Laine, "Multi-phase three-dimensional level set segmentation of brain MRI," Medical Image Computing and Computer-Assisted Intervention - Miccai 2004, Pt 1, Proceedings, vol. 3216, pp. 318-326, 2004.
[26] X. H. Yuan, J. Zhang, and B. P. Buckles, "A multiresolution method for tagline detection and indexing," IEEE Transactions on Information Technology in Biomedicine, vol. 14, pp. 507-513, Mar 2010.
[27] C. Wurslin, J. Machann, H. Rempp, C. Claussen, B. Yang, and F. Schick, "Topography mapping of whole body adipose tissue using a fully automated and standardized procedure," Journal of Magnetic Resonance Imaging, vol. 31, pp. 430-439, Feb 2010.
[28] A. Vedantam and V. Rajshekhar, "Does the type of T2-weighted hyperintensity influence surgical outcome in patients with cervical spondylotic myelopathy? A review," European Spine Journal, vol. 22, pp. 96-106, Jan 2013.
[29] R. Syha, C. Wurslin, D. Ketelsen, P. Martirosian, U. Grosse, F. Schick, et al., "Automated volumetric assessment of the Achilles tendon (AVAT) using a 3D T2 weighted SPACE sequence at 3 T in healthy and pathologic cases," European Journal of Radiology, vol. 81, pp. 1612-1617, Jul 2012.
[30] A. Rajendran and R. Dhanasekaran, "Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model," International Journal of Computers Communications & Control, vol. 7, pp. 530-539, Sep 2012.
[31] B. Karasulu and S. Korukoglu, "A simulated annealing-based optimal threshold determining method in edge-based segmentation of grayscale images," Applied Soft Computing, vol. 11, pp. 2246-2259, Mar 2011.
[32] A. M. Ittyachen and M. B. Jose, "Thalamic infarction following a russell’s viper bite," Southeast Asian Journal of Tropical Medicine and Public Health, vol. 43, pp. 1201-1204, Sep 2012.
[33] R. C. Hsu, D. Y. Chan, C. T. Liu, and W. C. Lai, "Contour extraction in medical images using initial boundary pixel selection and segmental contour following," Multidimensional Systems and Signal Processing, vol. 23, pp. 469-498, Dec 2012.
[34] P. E. Galibarov, P. J. Prendergast, and A. B. Lennon, "A method to reconstruct patient-specific proximal femur surface models from planar pre-operative radiographs," Medical Engineering & Physics, vol. 32, pp. 1180-1188, Dec 2010.
[35] I. Fitton, S. A. P. Cornelissen, J. C. Duppen, R. J. H. M. Steenbakkers, S. T. H. Peeters, F. J. P. Hoebers, et al., "Semi-automatic delitneation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer," Medical Physics, vol. 38, pp. 4662-4666, Aug 2011.
[36] G. Delso, A. Martinez-Moller, R. A. Bundschuh, S. G. Nekolla, and S. I. Ziegler, "The effect of limited MR field of view in MR/PET attenuation correction," Medical Physics, vol. 37, pp. 2804-2812, Jun 2010.
[37] L. Bahreini, E. Fatemizadeh, and M. Guity, "Diagnostic efficacy of all series of dynamic contrast enhanced breast MR images using gradient vector flow (GVF) segmentation and novel border feature extraction for differentiation between malignant and benign breast lesions," Iranian Journal of Radiology, vol. 7, pp. 225-234, 2010.
[38] R. S. Alomari, J. J. Corso, V. Chaudhary, and G. Dhillon, "Toward a clinical lumbar CAD: herniation diagnosis," International Journal of Computer Assisted Radiology and Surgery, vol. 6, pp. 119-126, Jan 2011.
[39] F. Ahs, A. M. Palmquist, A. Pissiota, L. Appel, O. Frans, I. Liberzon, et al., "Arousal modulation of memory and amygdala-parahippocampal connectivity: A PET-psychophysiology study in specific phobia," Psychophysiology, vol. 48, pp. 1463-1469, Nov 2011.
[40] Y. Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," IEEE Transactions on Medical Imaging, vol. 20, pp. 45-57, Jan 2001.
[41] R. W. Buccigrossi, "Compression and segmentation of images using an inter-subband wavelet probability model," PhD, University of Pennsylvania, Philadelphia,, 1999.
[42] Q. Du, "Unsupervised real-time constrained linear discriminant analysis to hyperspectral image classification," Pattern Recognition, vol. 40, pp. 1510-1519, May 2007.
[43] K. Etemad and R. Chellappa, "Discriminant analysis for recognition of human face images," Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 14, pp. 1724-1733, Aug 1997.
[44] W. S. Yambor, "Analysis of PCA-based and Fisher discriminant-based image recognition algorithms," M.S., Computer Science Department, Colorado State University, 2000.
[45] P. Howland, M. Jeon, and H. Park, "Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition," Siam Journal on Matrix Analysis and Applications, vol. 25, pp. 165-179, 2003.
[46] J. W. Hung and L. S. Lee, "Optimization of temporal filters for constructing robust features in speech recognition," IEEE Transactions on Audio Speech and Language Processing, vol. 14, pp. 808-832, May 2006.
[47] S. Mika, "Kernel Fisher discriminants," PhD, University of Technology, Berlin, 2002.
[48] J. C. Harsanyi, "Detection and classification of subpixel spectral signatures in hyperspectral image sequences," PH.D., Department of Electrical Engineering, University of Maryland, Baltimore, 1993.
[49] R. G. Resmini, M. E. Kappus, W. S. Aldrich, J. C. Harsanyi, and M. Anderson, "Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor-data at Cuprite, Nevada, USA," International Journal of Remote Sensing, vol. 18, pp. 1553-1570, May 10 1997.
[50] W. Farrand and J. C. Harsanyi, "Mapping the distribution of mine tailing in the coeur d’Alene river valley, Idaho, through the use of constrained energy minimization technique," Remote Sensing of Environment, vol. 59, pp. 64-76, 1997.
[51] R. Adams and L. Bischof, "Seeded region growing," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp. 641-647, Jun 1994.
[52] J. P. Fan, D. K. Y. Yau, A. K. Elmagarmid, and W. G. Aref, "Automatic image segmentation by integrating color-edge extraction and seeded region growing," IEEE Transactions on Image Processing, vol. 10, pp. 1454-1466, Oct 2001.
[53] H. P. Fan, G. H. Zeng, M. Body, and M. S. Hacid, "Seeded region growing: an extensive and comparative study," Pattern Recognition Letters, vol. 26, pp. 1139-1156, Jun 2005.
[54] F. Y. Shih and S. X. Cheng, "Automatic seeded region growing for color image segmentation," Image and Vision Computing, vol. 23, pp. 877-886, Sep 20 2005.
[55] Y. N. Deng and B. S. Manjunath, "Unsupervised segmentation of color-texture regions in images and video," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 800-810, Aug 2001.
[56] FMRIB’s Automated Segmentation Tool - http://www.fmrib.ox.ac.uk/analysis/research/fast/.
[57] H. Gudbjartsson and S. Patz, "The Rician distribution of noisy MRI data," Magnetic Resonance in Medicine, vol. 34, pp. 910-914, Dec 1995.
[58] H. Suzuki and J. Toriwaki, "Automatic segmentation of head MR images by knowledge guided thresholding," Computerized Medical Imaging and Graphics, vol. 15, pp. 233-240, 1991.
[59] C. I. Chang and D. C. Heinz, "Constrained subpixel target detection for remotely sensed imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 38, pp. 1144-1159, May 2000.
[60] C. C. Kang and W. J. Wang, "A novel edge detection method based on the maximizing objective function," Pattern Recognition, vol. 40, pp. 609-618, Feb 2007.
[61] G. C. Lin, W. J. Wang, C. M. Wang, and S. Y. Sun, "Automated classification of multi-spectral MR images using Linear Discriminant Analysis," Computerized Medical Imaging and Graphics, vol. 34, pp. 251-268, Jun 2010.
[62] M. S. Yang, Y. J. Hu, K. C. R. Lin, and C. C. L. Lin, "Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms," Magnetic Resonance Imaging, vol. 20, pp. 173-179, Feb 2002.
[63] J. Suckling, T. Sigmundsson, K. Greenwood, and E. T. Bullmore, "A modified fuzzy clustering algorithm for operator independent brain tissue classification of dual echo MR images," Magnetic Resonance Imaging, vol. 17, pp. 1065-1076, Sep 1999.
[64] C. E. Metz, "ROC methodology in radiological imaging," Invest Radiol, pp. 720-723, 1986.
[65] C. I. Chang and H. Ren, "An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 38, pp. 1044-1063, Mar 2000.
指導教授 王文俊(Wen-June Wang) 審核日期 2013-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明