摘要(英) |
Performance of numerical simulation usually depends whether the initial
condition is close to real atmosphere or not. Wind profiler with high temporal and
spatial resolution may correct initial condition in numerical models to have better
simulation or forecast results. In this study, we use WRF model to simulate Megi
typhoon during Oct. 20-24, 2010. We have conducted three sensitivity
experiments─ radius of influence experiment(RI-EXP), interval of data
assimilation experiment(INT-EXP), and position experiment(POS-EXP). In the
RI-EXP, we test different horizontal radius of influence (R1= 0.05 、 R2= 0.1 、
R3= 1.0) to get the appropriate radius. In the INT-EXP, we use R3=1.0 which is
more accurate results of RI-EXP to test DA interval─ one hour, three hours, and
six hours. We implement only one observation site that is closest to Taiwan to test
the position sensitivity to data assimilation. In the RI-EXP, the result with radius
of influence 1.0 is the most close to analysis field and precipitation observation.
For the second experiment, 3 hour data assimilation interval results in the lowest
RMSE. Compared to all Japanese wind profiler network data assimilation, in the
last experiments, we can get similar precipitation pattern when we assimilate only
the wind profiler observation nearest Taiwan or assimilate all the wind profiler
observation data in the domain. However, if we excluded the nearest wind profiler
observation, it is difficult to capture correct precipitation pattern in Hualien. In
this study, our findings and results are very consistent with previous studies, that is wind profiler data assimilation not only can correctly capture the variation of
large scale weather pattern but also can be correctly simulate the characteristics
of the local circulation. |
參考文獻 |
曲克恭、陳正改,1988:" 琳恩颱風豪雨研究",大氣科學期刊,
第三號,第十六期,第253-262頁。
李清勝,1988:"台灣地區颱風路徑之預報分析。大氣科學",大
氣科學期刊,第三號,第十六期,第133-140頁。
李清勝、羅英哲、張龍耀,2007:”琳恩颱風(1987)與東北季風交
互作用產生強降水之研究”,大氣科學期刊,第一號,第
三十五期,第13-33頁。
洪于珺,2010:颱風辛樂克(2008) WRF 模擬及位渦反演之研究。國
立中央大學,大氣物理研究所,碩士論文。
迮嘉欣,2009:資料同化對台灣地區颱風和梅雨模擬之影響。國立
中央大學,大氣物理研究所,碩士論文。
連國淵,2009:颱風路徑與結構同化研究-系集卡爾曼濾波器。國立
台灣大學,大氣科學研究所,碩士論文。
葉天降、吳石吉、謝信良, 1998:台灣附近颱風路徑預報校驗與統
計方法之應用。大氣科學,第26 期3 號,227-248。
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data
assimilation. Mon. Wea. Rev., 129.2884-2903.
Barker, D. M., W. Huang, Y.-R. Guo, and A. Bourgeois, 2003: A three-
dimensional variational (3DVAR) data assimilation system for use
with MM5. NCAR Tech. Note,68 pp.
Barker, D., W. Huang, Y.-R. Guo, A. J. Bourgeois,and Q. N. Xiao, 2004:
A threedimensional variational data assimilation system for MM5:
Implementation and initial results. Mon. Wea. Rev., 132, 897–914.
Benjamin, S. G., BARRY E. S, E. J. SZOKE, AND S. E. KOCH, 2004:
The Value of Wind Profiler Data in U.S. Weather Forecasting.
Bulletin of American Meteorological Society, 85, 1871-1886.
Chen, F., and J. Dudhia, 2001: Coupling and advanced land-surface/
hydrology modelwith the Penn State/ NCAR MM5 modeling system.
Part I: Model description and implementation. Mon. Wea. Rev., 129,
569-585.
Chen, S.- H., J.‐Y., Chen, W.‐Y. Chang, P.‐L. Lin, P.‐H. Lin, and W.‐Y.
Sun, 2011: Observing System Simulation Experiment: Development
of the system and preliminary results. Journal of
Geophysical Research, 116, doi:10.1029/2010JD015103
Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared
radiation parameterization for use in general circulation models.
NASA Tech. Memo.104606, 3, 85pp.
Kain, J. S., and J. M. Fritsch, 1990:A one-dimensional entraining/
detraining plume model and its application in convective
parameterization. J. Atmos. Sci., 47, 2784-2802.
Kain, J. S., and J. M. Fritsch, 1993:Convective parameterization for
mesoscale models:The Kain-Fritsch scheme, The representation of
cumulus convection in numerical models. K.A. Emanuel and D. J.
Raymond, Eds., Amer. Meteor. Soc.,246 pp.
Pan, C. J., K. K. Reddy, H. C. Lai, S. S. Yang, and C. J. Wong, 2010:
Wind profiler observations on orographic effects of typhoon wind
structure modification over Taiwan. Ann. Geophys., 28, 141–147
Park, S. Y., H. W. Lee, S. W. Lee, and D. H. Kim, 2010: Impact of Wind
Profiler Data Assimilation on Wind Field Assessment over Coastal
Areas. Asian Journal of Atmospheric Environment, 4, 198-210.
Schaefer, J. T., 1990: The critical success index as an indicator of
warning skill. Wea. Forecasting, 5, 570-575.
St-James, J. S., and S. Laroche, 2005: Assimilation of wind profiler data
in the Canadian Meteorological Center’s analysis system. J. Atmos.
Oceanic Technol., 22, 1181–1194.
Smith,T. L. and S. G. Benjamin, 1993: Impact of Network Wind Profiler
Data on a 3-h Data Assimilation System. Bulletin of American
Meteorological Society, 74, 801-807. |