參考文獻 |
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., “Silver–modified titanium dioxide thin films for efficient photodegradation of methyl orange”, Appl. Catal., B (2003), 42, 187–201.
Aruna, S.T.; Tirosh, S. and Zaban, A., “Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers”, J. Mater. Chem. (2000), 10, 2388–2391.
Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki & Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science (2001), 293, 269-271.
Babapour, A., Akhavan, O., Azimirad R., Moshfegh, A. Z., “Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix”, Nanotechnology (2006), 17, 763–771.
Balek, V.; Li, D.; Subrt, J.; Vecerníková, E.; Hishita, S.; Mitsuhashi, T. and Haneda, H., “Characterization of nitrogen and fluorine co–doped titania photocatalyst: effect of temperature on microstructure and surface activity properties”, J. Phys. Chem. Solids (2007), 68, 5–6, 770–774.
Behar, D. and Rabani J.,” Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study”, J. Phys. Chem. B (2006), 110, 8750-8755.
Bischoff, B. L. and Anderson, M. A., “Peptization process in the sol–gel preparation of porous anatase TiO2”, Chem. Mater. (1995), 7, 1772–1778.
Carp O., Huisman C. L. and Reller A., “Photoinduced reactivity of titanium dioxide”, Progress in Solid State Chemistry (2004), 32, 33-177.
Chan, S.C. and Barteau, M.A., “Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition”, Langmuir (2005), 21, 5588-5595.
Chen, Q.; Tang, C. and Zheng, G., “First–principles study of TiO2 anatase (101) surfaces doped with N”, Physica B (2009), 404, 1074–1078.
Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner D.; Youngblood, J. and Mcarthy, T. J., “Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples”, Langmuir (1999), 15, 3395–3399.
Chhabra V., Pillai V., Mishra B. K., Morrone A., Shah D. O., “Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 particles”, Langmuir (1995), 11, 3307-3311.
Choi J. Y., Kim C. H., and Kim D. K., “Hydrothermal synthesis of spherical perovskite oxide powders using spherical gel powders”, J. Am. Ceram. Soc. (1998), 81, 1353-1356.
Choi, W. Y.; Termin, A. and Hoffmann, M. R., “Effects of metal–ion dopants on the photocatalytic reactivity of quantum–sized TiO2 particles”, Angew. Chem., Int. Ed. (1994), 33, 1091–1092.
Choi, W; Termin, A and Hoffmann, M. R., “The role of metal ion dopants in quantum–sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics”, J. Phys. Chem. (1994), 98. 13669–13679.
Chopin, T.; Denis, S. and Fourre, P., US Patent (1992), 5149519.
Chrysicopoulou, P.; Davazoglou, D.; Trapalis, C. and Kordas, G., “Optical properties of very thin (< 100nm) sol–gel TiO2 films”, Thin Solid Films (1998), 323, 188–193.
Chuang, H.Y. and Chen, D.H., “Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles”, Nanotechnology (2009), 20, 105704.
Cojocaru, B.; Neatu, S.; Parvulescu, V. I.; Somoghi, V.; Petrea, N., Epure, G.; Alvaro, M. and Garcia, H., “Synergism of activated carbon and undoped and nitrogen-doped TiO2 in the photocatalytic degradation of the chemical warfare agents soman”, VX, and Yperite, ChemSusChem (2009), 427–436.
Dibble, L. A. and Raupp, G. B., “Fluidized–bed photocatalytic oxidation of trichloroethylene in contaminated airstreams”, Environ. Sci. Technol. (1992), 26, 492–495.
Dobosz, A. and Sobczyński, A., “The influence of silver additives on titania photoactivity in the photooxidation of phenol”, Water Res. (2003), 37, 1489–1496.
Dvoranova, D.; Brezova, V.; Mazur, M. and Malati, M. A., “Investigations of metal–doped titanium dioxide photocatalysts”, Appl. Catal., B–Environ. (2002), 37, 91–105.
Fetterolf, M. L., Patel, H. V. and Jennings, J. M., “Adsorption of methylene blue and acid blue 40 on titania from aqueous solution”, J. Chem. Eng. Data (2003), 48, 831–835.
Frank, S. N. and Bard, A. J., “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, J. Phys. Chem. (1977), 81, 1484–1488.
Fu, Q., Wagner, T., “Interaction of nanostructured metal overlayers with oxide surfaces”, Surf. Sci. Rep. (2007), 62, 431-498.
Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature (1972), 238, 37–38.
Fujishima, A.; Hashimoto, K. and Watanabe, T., “TiO2 photocatalysis fundamentals and applications”, BKC Inc., Japan, 1999.
Fujishima, A.; Ohtsuki, J.; Yamashita, T. and Hayakawa, S., “Behavior of tumor cells on photoexcited semiconductor surface”, Photomed. Photobiol. (1986), 8, 45–46.
G. N. Schrauzer and T. D. Guth, “Photolysis of water and photoreduction of nitrogen on titanium dioxide”, J. Am. Chem. Soc. (1977), 99, 7189-7193.
Galindo, C., Jacques, P., Kalt, A., “Photooxidation of the phenylazonaphthol AO20 on TIO2: Kinetic and mechanistic investigations”, Chemosphere (2001), 45, 997–1005.
Giannakopoulou, T.; Todorova, N.; Trapalis, C. and Vaimakis, T., “Effect of fluorine doping and SiO2 under–layer on the optical properties of TiO2 thin films”, Mater. Lett. (2007), 61, 23–24, 4474–4477.
Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. and X. Chen, “Highly efficient formation of visible light tunable TiO2–xNx photocatalysts and their transformation at the nanoscale”, J. Phys. Chem. B (2004), 108, 4, 1230–1240.
Haruta, M. “Size- and support-dependency in the catalysis of gold”, Catal. Today (2007) 36, 153-166.
Hashimoto, K.; Irie, H. and Fujishima A., “TiO2 photocatalysis: A historical overview and future prospects”, Jpn. J. Appl. Phys. (2005), 44, 8269
Hazlett R. D., Mittal K.L. (Ed.), “Wettability and Adhesion”, VSP, Utrecht (1993), 173.
Herrmann, J. M.; Tahiri, H.; Ait–Ichou, Y.; Lassaletta, G.; González–Elipe, A. R. and Fernández, A., “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag/TiO2 coating on quartz”, Appl. Catal., B–Environ. (1997), 13, 219–228.
Hirakawa, T, and Kamat, P.V., “Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−irradiation”,.JACS (2005), 127, 3928-3934.
Hirakawa, T. and Kanat, P.V., “Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters”, Langmuir (2004), 20, 5645-5647.
Hiroyuki O, Fred H, Chien M. W., “Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion”, Chem. Mater. (2001), 13, 4130-4135.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M., “Photocatalytic degradation pathyway of methylene blue in water”, Appl. Catal., B–Environ. (2001), 31, 145–157.
Http://ruby.colorado.edu/~smyth/min/tio2.html Mineral structue and property data.
Hu, C. and Yu, J.C., “Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions”, Appl. Catal. B: Environ., 42, 27-55 (2003).
Huang, D.; Liao, S.; Liu, J. M.; Dang, Z. and Petrik, L., “Preparation of visible–light responsive N–F–codoped TiO2 photocatalyst by a sol–gel–solvothermal method”, J. Photochem. Photobiol., A (2006), 184, 3, 282–288.
Jia, H.; Xu, H.; Hu, Y., Tang Y. and Zhang, L., “TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties”, Electrochemistry Communications (2007), 9, 354–360.
Kang, M., “Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol”, J. Mol. Catal A: Chem. (2003), 97, 173–183.
Karvinen, S.; Hirva, P. and Pakkanen, T. A., “Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2”, J. Mol. Struct.–Theochem (2003), 626, 271–277.
Kavan L., O’Regan B., Kay A., Gra¨tzel M., “Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3”, J. Electroanal. Chem. (1993), 346, 291-307.
Kawahara, K., Suzuki, K., Ohko, Y., Tatsuma, T., “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism”, Phys. Chem. Chem. Phys. (2005), 7, 3851-3855.
Kawai, A. and Nagata, H., “Wetting behavior of liquid on geometrical rough–surface formed by photolightgraphy”, Japan. J. Appl. Phys. (1994), 33, 1283–1285.
Kim, C. S.; Moon, B. K.; Park, J. H. and Son, S. M., “Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant”, J. Cryst. Growth (2003), 254, 405–410.
Kim, S. B. and Hong, S. C., “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst”, Appl. Catal., B–Environ. (2002), 35, 305–315.
Kim, S.K. and Hwang, S.J., “Visible light active platinum-ion-doped TiO2 photocatalyst”, J. Phys. Chem. B (2005), 109, 24260-24267.
Kolen’ko, Y. V.; Burukhin, A. A.; Churagulov, B. R. and Oleynikov, N. N., “Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions”, Mater. Lett. (2003), 57, 1124–1129.
Kreutler, B. and Bard, J. A., “Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates”, J. Am. Chem. Soc. (1978), 100, 4317–4318.
Krylova, G. V., Gnatyuk, Y. I., Smirnova, N. P., Eremenko, A. M., Gun’ko, V. M., “Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method”, J Sol–Gel Sci Technol (2009), 50, 216–228.
Kudo, A., “Photocatalyst materials for water splitting”, Catal. Surv. Asia (2003), 7, 31–38.
Lakshmi, S., Renganathan, R. and Fujita, S., “Study on TiO2–mediated photocatalytic degradation of methylene blue”, J. Photochem. Photobiol., A (1995), 88, 163–167.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C.L., “Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts”, Sep. Purif. Technol. (2007), 58, 148–151.
Li, F. B. and Li, X. Z., “Photocatalytic Properties of gold/gold ion–modified titanium dioxide for wastewater treatment”, Appl. Catal., A (2002), 228, 15–27.
Li, F. B. and Li, X. Z., “The Enhancement of photodegradation efficiency using Pt/TiO2 catalyst”, Chemosphere (2002), 48, 1103–1111.
Li, J.; Xu, J.; Dai, W. L.; Li, H. and Fan K., “Direct hydro–alcohol thermal synthesis of special core–shell structured Fe–doped titania microspheres with extended visible light response and enhanced photoactivity”, Appl. Catal., B–Environ. (2009), 85, 162–170.
Li, X. Y.; Yue, P. L. and Kutal, C., “Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles”, New J. Chem. (2003), 27, 1264–1269.
Li, X. Z.; Li, F. B.; Yang, C. L. and Ge, W. K., “Photocatalytic activity of WOx–TiO2 under visible light irradiation”, J. Photochem. Photobiol., A (2001), 141, 209–217.
Lin, Y. C. and Lin, C. H., “Catalytic and photocatalytic degradation of ozone via utilization of controllable nano–Ag modified on TiO2”, Environmental Progress (2008), 27, 4, 496–502.
Linsebigler, A. L., Lu, G., Yates J. T. and Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chem. Rev. (1995), 95, 735–758.
Martin, S. T. ; Morrison, C. L.; Hoffmann, M. R., “Photochemical mechanism of size–quantized vanadium–doped TiO2 particles”, J. Phys. Chem. (1994), 98, 13695–13704.
Matsumoto Y., Ishikawa Y., Nishida M., Ii S., “A new electrochemical method to prepare mesoporous titanium(IV) oxide photocatalyst fixed on alumite substrate”, J. Phys. Chem. B (2000), 104, 4204-4209.
Matsunaga, T.; Tomoda, R., Nakajima, T. and Wake, H., “Photoelectrochemical sterilization of microbial cells by semiconductor powders”, FEMS Microbiol. Lett. (1985), 29, 211–214.
Meichtry, J. M.; Rivera, V.; Iorio, Y. D., Rodríguez, H. B., Román, E. S.; Grela M. A. and Litter, M. I., “Photoreduction of Cr(VI) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2”, Photochemical & Photobiological Sciences (2009), 8, 5, 604–612.
Mohammadi, R.; Wassink, J. and Amirfazli, A., “Effect of surfactants on wetting of super–hydrophobic surfaces”, Langmuir (2004), 20, 9657–9662.
Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. E., “Handbook of X–ray Photoelectron spectroscopy”, Physical Electronics (1995).
Natarajan C., Nogami G., “Cathodic electrodeposition of nanocrystalline titanium dioxide thin films”, J. Electrochem. Soc. (1996), 143, 1547-1550.
O’Regan B., Gra¨tzel M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature (1991), 353, 737-740.
Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T. and Matsumura, M., “Preparation of S–doped TiO2 photocatalysts and their photocatalytic activities under visible light”, Appl. Catal., A (2004), 265, 1, 115–121.
Park H. K., Moon Y. T., Kim D. K., and Kim C. H., “Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2”, J. Am. Ceram. Soc. (1996), 79, 2727-2732.
Pastoriza-Santos, I. and Koktysh, D.S., “One-pot synthesis of Ag@TiO2 core−shell nanoparticles and their layer-by-layer assembly”, Langmuir (2000), 16, 2731-2735.
Pedraza, F. and Vasquez, A., “Obtention of TiO2 rutile at room temperature through direct oxidation of TiCl3”, J. Phys. Chem. Solids (1999), 60, 445–448.
Pillai V., Kumar P., Huo M. J., Ayyub P., Shah D. O., “Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors”, Adv. Colloid.Interface. Sci. (1995), 55, 241-269.
Poznyak, S. K.; Kokorin, A. I. and Kulak A. I., “Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes”, J. Electroanal. Chem. (1998), 442, 99–105.
Pruden, A. L. and Ollis, D. F., “Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water”, J. Catal. (1983), 82, 404–417.
Rauf, M. A. and Ashraf, S. S., “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution”, Chem. Eng. J. (2009), 151, 10–18.
Sakai, H., Kanda, T., Shibata, H., Ohkubo, T., Abe, M., “Preparation of highly dispersed core/shell–type titania nanocapsules containing a single Ag nanoparticle”, J. Am. Chem. Soc. (2006), 128, 4944–4945.
Sato, S., “Photocatalytic activity of NOx–doped TiO2 in the visible light region”, Chem. Phys. Lett. (1986), 123, 1–2, 126–128.
Siefert R. L., Pehkonen S. O., Erel Y., Hoffmann M. R., “Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids”, Geochim. Cosmochim. Acta (1994), 58, 3271-3279.
Sökmen, M. and Özkan, A., “Decolourising textile wastewater with modified titania: The effects of inorganic anions on the photocatalysis”, J. Photochem. Photobiol., A (2002), 147, 77–81.
Sonawane R. S.; Kale B. B. and Dongare M. K., “Preparation and photo–catalytic activity of Fe–TiO2 thin films prepared by sol–gel clip coating”, Mater. Chem. Phys. (2004), 85, 52–57.
Sonawane, R.S.; Hegde, H.G. and Dongare, M.K., “Preparation of titanium(iv) oxide thin–film photocatalyst by sol–gel dip coating”, Mater. Chem. Phys. (2003), 77, 744–750.
Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M., Nagendra, C. L.; Philip, R., Vijayamohanan, K. and Pradeep, T., “Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core–Shell nanoparticles: One–step synthesis, characterization, spectroscopy, and optical limiting properties”, Langmuir (2003), 19, 3439–3445.
Tryba B., “Increase of the photocatalytic activity of TiO2 by carbon and iron modifications”, Int. J. Photoenergy (2008).
Uelzen, T. and Muller, J., “Wettability enhancement by rough surfaces generated by thin film technology”, Thin Solid Films. (2003), 434, 311–315.
Vamathevan V., Tse H., Amal R., Low G., McEvoy S., “Effects of Fe3+ and Ag+ ions on the photocatalytic degradation of sucrose in water”, Catal. Today (2001), 68, 201-208.
Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., “Light-induced amphiphilic surfaces”, Nature (1997), 388, 431-432.
Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J. and Shen, T., “The surface chemistry of hybrid nanometer–sized paeticles I. Photochemical deposition of gold on ultrafine TiO2 particles”, Colloids Surfaces A: Physicochem. And Eng. Aspects (1998), 131, 271–280.
Wang, J., Zhao, H., Liu, X., Li, X., Xu, P., Han, X., “Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis”, Catalysis Communications (2009), 10, 1052–1056.
Wang, W.; Zhang, J.; Chen, F.; He, D. and Anpo, M., “Preparation and photocatalytic properties of Fe3+–doped Ag@TiO2 core–shell nanoparticles”, J. Colloid Interface Sci. (2008), 323, 182–186.
Wenzel, R. N., J. Phys. Colloid Chem. (1949), 53, 1466–1467.
Wolfram, E. and Faust, R., Wenzel J.F. Faraday (Ed.), “Wetting, Spreading and Adhesion”, Academic Press, London (1978), Chapter 10.
Wu, S. X.; Ma, Z.; Qin, Y. N.; He, F.; Jia, L. S. and Zhang, Y. J., “XPS study of copper doping TiO2 photocatalyst”, Acta Phys. Chim. Sin. (2003), 19, 967–969.
Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. and Hu, M. Z.–C., “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions”, Ind. Eng. Chem. Res. (1999), 38, 373–379.
Yildiz, A.; Lisesivdin, S. B.; Kasap, M. and Mardare, D., “Non–adiabatic small polaron hopping conduction in Nb–doped TiO2 thin film”, Physica. B, Condensed matter (2009), 404, 8–11, 1423–1426.
Yin, S.; Fujishiro, Y.; Wu, J.; Aki, M. and Sato, T., “Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions”, J. Master. Proc. Tech. (2003), 137, 45–48.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N., “Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method”, Thin Solid Film (2000), 379, 7–14.
Yu, J.C. and Hu, W., “Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania”, Environ. Sci. Tech. (2005), 39, 1175-1179.
Zhang R., Gao L., “Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles”, Mater. Res. Bull (2002), 37, 1659-1666.
Zhang, F., Pi Y., Cui J., Yang Y., “Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide”, J. Phys. Chem. C (2007), 111, 3756-3761.
Zhang, H., Chen, G., “Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method”, Environ. Sci. Technol. (2009), 43, 2905–2910.
Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N., “Photooxidative N–demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation”, J. Photochem. Photobiol., A (2001), 140, 163–172.
Zhao, X. F.; Meng, X. F.; Zhang, Z. H.; Liu, L. and Jia, D. Z., “Preparation and photocatalytic activity of Pb–doped TiO2 thin films”, J. Inorg. Mater. (2004), 19, 140–146.
Zhitomirsky I., “Cathodic electrosynthesis of titanium and ruthenium oxides”, Mater. Lett. (1998), 33, 305-310.
|