博碩士論文 973204049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.147.104.18
姓名 陳怡利(I-li Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 核殼結構及金屬擔載結構之Ag/TiO2光觸媒及在亞甲基藍之光催化性質
(The phohtocatalytic activity of Ag/TiO2 photocatalyst with core shell and metal doping structure toward methylene blue decomposition)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的在於發展具有高催化活性之核殼結構光觸媒,並將其應用於有機汙染物之分解。利用貴金屬如金、銀等改質二氧化鈦光觸媒已被廣泛研究;而貴金屬中的金、鉑和鈀的成本昂貴,難以被一般工業所接受。本研究主軸在於利用成本相較為低的銀來改質二氧化鈦。將貴金屬沉積於二氧化鈦表面可以提高光催化效率,由於金屬在表面形成電子活性點以促進界面電荷轉移,此種觸媒結構雖然活性好,但易造成暴露在外的金屬與其他表面介質產生作用,使金屬容易溶解或腐蝕,導致觸媒無法長久使用。核殼結構可用來克服此項缺點,將貴金屬置於內核,而半導體氧化物如二氧化鈦當做殼層。
本篇論文分成兩個部份,第一部分探討核殼結構之銀/二氧化鈦的製備,及活性,主要前驅物為硝酸銀、聯胺、十六烷基三甲基溴化銨及醇氧鈦。銀於內核層的量係利用感應偶合電漿質譜分析儀(ICP)與化學分析影像能譜儀(ESCA)測定。奈米銀顆粒的大小約為5-10nm,殼層之二氧化鈦厚度約為10-20nm。以 10 ppm 亞甲基藍水溶液為光反應標準物,以兩支1.5W波長254nm的紫外燈管當為光源,光降解樣品取樣利用紫外可見光光譜儀(UV–vis)分析濃度,進行光反應活性之鑑定。結果顯示經由水熱法後的核殼結構銀/二氧化鈦光觸媒活性優於未經水熱法之觸媒,其主要由於經由水熱法處理,會增加其二氧化鈦結晶性,而晶型結構明顯的二氧化鈦,可增加光子進入內核的量子效率。
在化學沉積法中,所製備之銀改質二氧化鈦其前驅物為Evonik Degussa 公司的P25二氧化鈦、十六烷基三甲基溴化銨、硼氫化鈉、硝酸銀,銀擔載量係利用感應偶合電漿質譜分析儀(ICP)進行測定,結果顯示,幾乎所有的銀前驅物都能夠擔載在二氧化鈦表面而不流失。其奈米銀顆粒大小約為 5-10 nm,以 10 ppm 亞甲基藍水溶液為光反應標準物,以兩支1.5W波長254nm的紫外燈管當為光源,光降解樣品取樣利用紫外可見光光譜儀(UV–vis)分析濃度,進行光反應活性之鑑定。結果顯示擔載銀重量比為1 wt.%的光降解效果最好,由此可見銀擔載量並非越多越好,擔載量太多會產生遮蔽效應,過多的銀顆粒會阻擋進入二氧化鈦表面的光子而降低光反應的量子效率,造成其光催化活性並不與銀擔載量成正比。
將銀擔載於二氧化鈦上之光觸媒與前述之核殼結構銀/二氧化鈦光觸媒做比較,可發現兩者在短時間內活性以銀擔載於二氧化鈦上之光觸媒能有較顯著的效果,以長時間而言兩者的活性差距不大,其可能原因為在短時間內,銀沉積於二氧化鈦上能夠有效地捕捉光子所激發之電子,增加了二氧化鈦表面活性位置,而提高了反應活性。而長時間後,表面的金屬可能會腐蝕或溶解,而核殼結構銀/二氧化鈦光觸媒可有效避免此問題。
電子與所吸附的氧分子與水分子反應分解成氧離子與氫氧自由基,這些高活性物質會與亞甲基藍分子反應而分解成小分子如二氧化碳與水分子。從實驗結果得知,銀擔載量的多寡並不是影響活性的主要因素,而是與奈米銀顆粒的分散性、顆粒大小、附著方式和結晶性有關。
摘要(英) The purpose of this study was to develop a catalyst with high photocatalytic activity and had core/shell structures. It could be applied to the decomposition of organic pollutants under UV light irradiation. The literature shows that the use of precious metals such as gold or silver modified titanium dioxide photocatalyst has been widely studied. Noble metals such as gold, platinum and palladium are too expensive to be used in industrial application. In order to find an efficient way to improve the quantum efficiency of photocatalyst, silver was chosen to modify titanium dioxide in this study. The noble metal deposition on the surface of titanium dioxide can increase the photocatalytic activity since the metal can form active sites to promote the electronic charge transfer in the interface of metal and TiO2. Although the activity of this kind of structure is high, the exposed metal is easy to dissolve or corrosive, therefore the catalyst cannot use for a long time. Core/shell structure can be used to overcome this shortcoming, the noble metals located in the core, while the semiconductor oxide such as titanium dioxide is in the shell.
This thesis is divided into two parts, the first part is on the preparation of Ag/TiO2 with core/shell structure and its activity. The precursors were the silver nitrate, hydrazine, cetyltrimethylammonium bromide and titanium tetraisopropoxide (TTIP). The amount of silver in the inner core was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray photoelectron spectroscopy (XPS). Nano-silver particle size was about 5-10nm, the shell thickness of titanium dioxide was about 10-20nm. The photoreaction was carried out in a 10 ppm methylene blue solution with two 1.5 W 254 nm UV light as the light source. The concentration of MB in the degradation samples were measured by UV-visible spectrometer (UV-vis). The results showed that Ag/TiO2 after hydrothermal treatment had higher photocatalytic activity than the one without treated by hydrothermal method. Which was mainly due to treatment by hydrothermal would increase the crystallinity of TiO2. The high crystallinity of titanium dioxide can increase the quantum efficiency of photons into the nucleus. In the chemical deposition method, the precursors were Evonik Degussa P-25 titanium dioxide, cetyltrimethyl ammonium bromide, sodium borohydride, and silver nitrate. The silver loading was determined by inductively coupled plasma-mass spectrometry meter (ICP-MS). The results show that almost all of the silver precursor could load on the support. The silver particle size was about 5-10 nm. The reaction was carried out in a 10 ppm methylene blue solution with two 1.5 W 254 nm wave length UV light as the light source. The concentration of methylene blue in the degradation samples was measured by UV-visible spectrometer (UV-vis). The results showed that the 1 wt.% Ag/TiO2 had the highest photodegradation activity. It shows that the silver loading was not the only reason to influence the photoactivity. Too much silver loading would block access the surface of titanium dioxide and decreased quantum efficiency of photoreaction. The photocatalytic activity was not proportional to silver loading. The activity of silver/TiO2 photocatalyst was compared with Ag@/TiO2 with core-shell structure. Ag/TiO2 had a higher activity in the initial reaction period. It was possible because the silver deposited on TiO2 could effectively capture the photons. After a long time reaction, the surface of the metal may corrode or dissolve, and the core-shell Ag@TiO2 photocatalyst can effectively avoid this problem. Silver nanoparticles increase the actives sites and make electrons easily act with the adsorbed substances such as O2 and OH– to form O2– and OH radicals. These highly active substances reacted with methylene blue molecules and formed small molecules such as carbon dioxide and water molecules.
關鍵字(中) ★ 奈米銀
★ 核殼結構光觸媒
★ 化學沉積法
★ 光觸媒
★ 亞甲基藍降解
★ 銀改質二氧化鈦
★ 二氧化鈦
關鍵字(英) ★ nanoparticle
★ methylene blue degradation
★ chemical deposition
★ core/shell structure photocatalyst
★ silver
★ titanium dioxide
論文目次 摘要 I
Abstract III
Table of Contents VI
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Objectives of Research 3
Chapter 2 Literature Review 4
2.1 Property of titanium dioxide 4
2.1.1 Property of semiconductor 4
2.1.2 Characterization of TiO2 structures 9
2.2 Titanium dioxide nanomaterial preparation by liquid phase synthesis 14
2.2.1 Sol–gel method 14
2.2.2 Hydrothermal method 16
2.2.3 Co–precipitation method 16
2.2.4 Microemulsion method 17
2.2.5 Electrochemical method 19
2.3 Modified titanium dioxide 19
2.3.1 Noble metal doping 21
2.3.2 Transition metal doping 24
2.3.3 Anion doping 27
2.3.4 Composite TiO2 27
2.3.5 Synthesis of core–shell structure 28
2.4 Application of photocatalyst 29
2.4.1 Water purification 31
2.4.2 Air cleaning (VOCs degradation) 34
2.4.3 Superhydrophilic, anti-fogging and self-cleaning surface 34
2.4.4 Cancer treatment 38
2.5 Photoactivity test by methylene blue destruction 39
Chapter 3 Ag@TiO2 Core/Shell Structure and Its Photocatalytic Property 43
3.1 Introduction 43
3.2 Experimental 46
3.2.1 Material 46
3.2.2 Synthesis of Ag@TiO2 nanoparticles 46
3.2.3 Characterization 48
3.2.3.1 ICP-MS 48
3.2.3.2 XRD 48
3.2.3.3 TEM and HRTEM and diffraction analysis 48
3.2.3.4 XPS 49
3.2.3.5 UV-vis 49
3.2.4 Degradation of methylene blue 49
3.3 Results and discussion 51
3.3.1 ICP –MS results 51
3.3.2 XRD results 53
3.3.3 TEM/HR–TEM results and diffraction analysis 55
3.3.4 XPS 58
3.3.5 Photoactivity test 62
3.4 Conclusion 64
Chapter 4 Synthesis of Ag/TiO2 by Chemical Deposition and Its Photocatalytic Property 65
4.1 Introduction 65
4.2 Experimental 67
4.2.1 Material 67
4.2.2 Synthesis of Ag/TiO2 nanoparticles 67
4.2.3 Characterization 67
4.2.3.1 ICP–MS 68
4.2.3.2 XRD 68
4.2.3.3 TEM and HRTEM and diffraction analysis 68
4.2.3.4 XPS 68
4.2.3.5 UV–vis 69
4.2.4 Degradation of methylene blue 69
4.3 Results and discussion 70
4.3.1 ICP-MS results 70
4.3.2 XRD results 72
4.3.3 TEM/HR–TEM and diffraction analysis 74
4.3.4 XPS results 77
4.3.5 Photoactivity test 81
4.4 Conclusion 83
Chapter 5 Summary 84
5.1 Photocatalysis mechanism 84
5.1.1 Mechanism of core-shell structure 84
5.1.2 Mechanism of metal doping structure 84
5.2 Synthesis methods 85
5.2.1 Sol-gel and hydrothermal methods of Ag@TiO2 85
5.2.2 Chemical deposition method of Ag/TiO2 85
5.3 Comparison of two different structures on photodegradation activity 86
5.3.1 The crystallinity of TiO2 86
5.3.2 Ag amounts 86
5.3.3 The ratio of OH–/O2– in these catalysts 87
5.4 Future work 88
Reference 89
參考文獻 Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., “Silver–modified titanium dioxide thin films for efficient photodegradation of methyl orange”, Appl. Catal., B (2003), 42, 187–201.
Aruna, S.T.; Tirosh, S. and Zaban, A., “Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers”, J. Mater. Chem. (2000), 10, 2388–2391.
Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki & Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science (2001), 293, 269-271.
Babapour, A., Akhavan, O., Azimirad R., Moshfegh, A. Z., “Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix”, Nanotechnology (2006), 17, 763–771.
Balek, V.; Li, D.; Subrt, J.; Vecerníková, E.; Hishita, S.; Mitsuhashi, T. and Haneda, H., “Characterization of nitrogen and fluorine co–doped titania photocatalyst: effect of temperature on microstructure and surface activity properties”, J. Phys. Chem. Solids (2007), 68, 5–6, 770–774.
Behar, D. and Rabani J.,” Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study”, J. Phys. Chem. B (2006), 110, 8750-8755.
Bischoff, B. L. and Anderson, M. A., “Peptization process in the sol–gel preparation of porous anatase TiO2”, Chem. Mater. (1995), 7, 1772–1778.
Carp O., Huisman C. L. and Reller A., “Photoinduced reactivity of titanium dioxide”, Progress in Solid State Chemistry (2004), 32, 33-177.
Chan, S.C. and Barteau, M.A., “Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition”, Langmuir (2005), 21, 5588-5595.
Chen, Q.; Tang, C. and Zheng, G., “First–principles study of TiO2 anatase (101) surfaces doped with N”, Physica B (2009), 404, 1074–1078.
Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner D.; Youngblood, J. and Mcarthy, T. J., “Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples”, Langmuir (1999), 15, 3395–3399.
Chhabra V., Pillai V., Mishra B. K., Morrone A., Shah D. O., “Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 particles”, Langmuir (1995), 11, 3307-3311.
Choi J. Y., Kim C. H., and Kim D. K., “Hydrothermal synthesis of spherical perovskite oxide powders using spherical gel powders”, J. Am. Ceram. Soc. (1998), 81, 1353-1356.
Choi, W. Y.; Termin, A. and Hoffmann, M. R., “Effects of metal–ion dopants on the photocatalytic reactivity of quantum–sized TiO2 particles”, Angew. Chem., Int. Ed. (1994), 33, 1091–1092.
Choi, W; Termin, A and Hoffmann, M. R., “The role of metal ion dopants in quantum–sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics”, J. Phys. Chem. (1994), 98. 13669–13679.
Chopin, T.; Denis, S. and Fourre, P., US Patent (1992), 5149519.
Chrysicopoulou, P.; Davazoglou, D.; Trapalis, C. and Kordas, G., “Optical properties of very thin (< 100nm) sol–gel TiO2 films”, Thin Solid Films (1998), 323, 188–193.
Chuang, H.Y. and Chen, D.H., “Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles”, Nanotechnology (2009), 20, 105704.
Cojocaru, B.; Neatu, S.; Parvulescu, V. I.; Somoghi, V.; Petrea, N., Epure, G.; Alvaro, M. and Garcia, H., “Synergism of activated carbon and undoped and nitrogen-doped TiO2 in the photocatalytic degradation of the chemical warfare agents soman”, VX, and Yperite, ChemSusChem (2009), 427–436.
Dibble, L. A. and Raupp, G. B., “Fluidized–bed photocatalytic oxidation of trichloroethylene in contaminated airstreams”, Environ. Sci. Technol. (1992), 26, 492–495.
Dobosz, A. and Sobczyński, A., “The influence of silver additives on titania photoactivity in the photooxidation of phenol”, Water Res. (2003), 37, 1489–1496.
Dvoranova, D.; Brezova, V.; Mazur, M. and Malati, M. A., “Investigations of metal–doped titanium dioxide photocatalysts”, Appl. Catal., B–Environ. (2002), 37, 91–105.
Fetterolf, M. L., Patel, H. V. and Jennings, J. M., “Adsorption of methylene blue and acid blue 40 on titania from aqueous solution”, J. Chem. Eng. Data (2003), 48, 831–835.
Frank, S. N. and Bard, A. J., “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, J. Phys. Chem. (1977), 81, 1484–1488.
Fu, Q., Wagner, T., “Interaction of nanostructured metal overlayers with oxide surfaces”, Surf. Sci. Rep. (2007), 62, 431-498.
Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature (1972), 238, 37–38.
Fujishima, A.; Hashimoto, K. and Watanabe, T., “TiO2 photocatalysis fundamentals and applications”, BKC Inc., Japan, 1999.
Fujishima, A.; Ohtsuki, J.; Yamashita, T. and Hayakawa, S., “Behavior of tumor cells on photoexcited semiconductor surface”, Photomed. Photobiol. (1986), 8, 45–46.
G. N. Schrauzer and T. D. Guth, “Photolysis of water and photoreduction of nitrogen on titanium dioxide”, J. Am. Chem. Soc. (1977), 99, 7189-7193.
Galindo, C., Jacques, P., Kalt, A., “Photooxidation of the phenylazonaphthol AO20 on TIO2: Kinetic and mechanistic investigations”, Chemosphere (2001), 45, 997–1005.
Giannakopoulou, T.; Todorova, N.; Trapalis, C. and Vaimakis, T., “Effect of fluorine doping and SiO2 under–layer on the optical properties of TiO2 thin films”, Mater. Lett. (2007), 61, 23–24, 4474–4477.
Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. and X. Chen, “Highly efficient formation of visible light tunable TiO2–xNx photocatalysts and their transformation at the nanoscale”, J. Phys. Chem. B (2004), 108, 4, 1230–1240.
Haruta, M. “Size- and support-dependency in the catalysis of gold”, Catal. Today (2007) 36, 153-166.
Hashimoto, K.; Irie, H. and Fujishima A., “TiO2 photocatalysis: A historical overview and future prospects”, Jpn. J. Appl. Phys. (2005), 44, 8269
Hazlett R. D., Mittal K.L. (Ed.), “Wettability and Adhesion”, VSP, Utrecht (1993), 173.
Herrmann, J. M.; Tahiri, H.; Ait–Ichou, Y.; Lassaletta, G.; González–Elipe, A. R. and Fernández, A., “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag/TiO2 coating on quartz”, Appl. Catal., B–Environ. (1997), 13, 219–228.
Hirakawa, T, and Kamat, P.V., “Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−irradiation”,.JACS (2005), 127, 3928-3934.
Hirakawa, T. and Kanat, P.V., “Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters”, Langmuir (2004), 20, 5645-5647.
Hiroyuki O, Fred H, Chien M. W., “Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion”, Chem. Mater. (2001), 13, 4130-4135.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M., “Photocatalytic degradation pathyway of methylene blue in water”, Appl. Catal., B–Environ. (2001), 31, 145–157.
Http://ruby.colorado.edu/~smyth/min/tio2.html Mineral structue and property data.
Hu, C. and Yu, J.C., “Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions”, Appl. Catal. B: Environ., 42, 27-55 (2003).
Huang, D.; Liao, S.; Liu, J. M.; Dang, Z. and Petrik, L., “Preparation of visible–light responsive N–F–codoped TiO2 photocatalyst by a sol–gel–solvothermal method”, J. Photochem. Photobiol., A (2006), 184, 3, 282–288.
Jia, H.; Xu, H.; Hu, Y., Tang Y. and Zhang, L., “TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties”, Electrochemistry Communications (2007), 9, 354–360.
Kang, M., “Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol”, J. Mol. Catal A: Chem. (2003), 97, 173–183.
Karvinen, S.; Hirva, P. and Pakkanen, T. A., “Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2”, J. Mol. Struct.–Theochem (2003), 626, 271–277.
Kavan L., O’Regan B., Kay A., Gra¨tzel M., “Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3”, J. Electroanal. Chem. (1993), 346, 291-307.
Kawahara, K., Suzuki, K., Ohko, Y., Tatsuma, T., “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism”, Phys. Chem. Chem. Phys. (2005), 7, 3851-3855.
Kawai, A. and Nagata, H., “Wetting behavior of liquid on geometrical rough–surface formed by photolightgraphy”, Japan. J. Appl. Phys. (1994), 33, 1283–1285.
Kim, C. S.; Moon, B. K.; Park, J. H. and Son, S. M., “Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant”, J. Cryst. Growth (2003), 254, 405–410.
Kim, S. B. and Hong, S. C., “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst”, Appl. Catal., B–Environ. (2002), 35, 305–315.
Kim, S.K. and Hwang, S.J., “Visible light active platinum-ion-doped TiO2 photocatalyst”, J. Phys. Chem. B (2005), 109, 24260-24267.
Kolen’ko, Y. V.; Burukhin, A. A.; Churagulov, B. R. and Oleynikov, N. N., “Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions”, Mater. Lett. (2003), 57, 1124–1129.
Kreutler, B. and Bard, J. A., “Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates”, J. Am. Chem. Soc. (1978), 100, 4317–4318.
Krylova, G. V., Gnatyuk, Y. I., Smirnova, N. P., Eremenko, A. M., Gun’ko, V. M., “Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method”, J Sol–Gel Sci Technol (2009), 50, 216–228.
Kudo, A., “Photocatalyst materials for water splitting”, Catal. Surv. Asia (2003), 7, 31–38.
Lakshmi, S., Renganathan, R. and Fujita, S., “Study on TiO2–mediated photocatalytic degradation of methylene blue”, J. Photochem. Photobiol., A (1995), 88, 163–167.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C.L., “Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts”, Sep. Purif. Technol. (2007), 58, 148–151.
Li, F. B. and Li, X. Z., “Photocatalytic Properties of gold/gold ion–modified titanium dioxide for wastewater treatment”, Appl. Catal., A (2002), 228, 15–27.
Li, F. B. and Li, X. Z., “The Enhancement of photodegradation efficiency using Pt/TiO2 catalyst”, Chemosphere (2002), 48, 1103–1111.
Li, J.; Xu, J.; Dai, W. L.; Li, H. and Fan K., “Direct hydro–alcohol thermal synthesis of special core–shell structured Fe–doped titania microspheres with extended visible light response and enhanced photoactivity”, Appl. Catal., B–Environ. (2009), 85, 162–170.
Li, X. Y.; Yue, P. L. and Kutal, C., “Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles”, New J. Chem. (2003), 27, 1264–1269.
Li, X. Z.; Li, F. B.; Yang, C. L. and Ge, W. K., “Photocatalytic activity of WOx–TiO2 under visible light irradiation”, J. Photochem. Photobiol., A (2001), 141, 209–217.
Lin, Y. C. and Lin, C. H., “Catalytic and photocatalytic degradation of ozone via utilization of controllable nano–Ag modified on TiO2”, Environmental Progress (2008), 27, 4, 496–502.
Linsebigler, A. L., Lu, G., Yates J. T. and Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chem. Rev. (1995), 95, 735–758.
Martin, S. T. ; Morrison, C. L.; Hoffmann, M. R., “Photochemical mechanism of size–quantized vanadium–doped TiO2 particles”, J. Phys. Chem. (1994), 98, 13695–13704.
Matsumoto Y., Ishikawa Y., Nishida M., Ii S., “A new electrochemical method to prepare mesoporous titanium(IV) oxide photocatalyst fixed on alumite substrate”, J. Phys. Chem. B (2000), 104, 4204-4209.
Matsunaga, T.; Tomoda, R., Nakajima, T. and Wake, H., “Photoelectrochemical sterilization of microbial cells by semiconductor powders”, FEMS Microbiol. Lett. (1985), 29, 211–214.
Meichtry, J. M.; Rivera, V.; Iorio, Y. D., Rodríguez, H. B., Román, E. S.; Grela M. A. and Litter, M. I., “Photoreduction of Cr(VI) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2”, Photochemical & Photobiological Sciences (2009), 8, 5, 604–612.
Mohammadi, R.; Wassink, J. and Amirfazli, A., “Effect of surfactants on wetting of super–hydrophobic surfaces”, Langmuir (2004), 20, 9657–9662.
Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. E., “Handbook of X–ray Photoelectron spectroscopy”, Physical Electronics (1995).
Natarajan C., Nogami G., “Cathodic electrodeposition of nanocrystalline titanium dioxide thin films”, J. Electrochem. Soc. (1996), 143, 1547-1550.
O’Regan B., Gra¨tzel M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature (1991), 353, 737-740.
Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T. and Matsumura, M., “Preparation of S–doped TiO2 photocatalysts and their photocatalytic activities under visible light”, Appl. Catal., A (2004), 265, 1, 115–121.
Park H. K., Moon Y. T., Kim D. K., and Kim C. H., “Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2”, J. Am. Ceram. Soc. (1996), 79, 2727-2732.
Pastoriza-Santos, I. and Koktysh, D.S., “One-pot synthesis of Ag@TiO2 core−shell nanoparticles and their layer-by-layer assembly”, Langmuir (2000), 16, 2731-2735.
Pedraza, F. and Vasquez, A., “Obtention of TiO2 rutile at room temperature through direct oxidation of TiCl3”, J. Phys. Chem. Solids (1999), 60, 445–448.
Pillai V., Kumar P., Huo M. J., Ayyub P., Shah D. O., “Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors”, Adv. Colloid.Interface. Sci. (1995), 55, 241-269.
Poznyak, S. K.; Kokorin, A. I. and Kulak A. I., “Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes”, J. Electroanal. Chem. (1998), 442, 99–105.
Pruden, A. L. and Ollis, D. F., “Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water”, J. Catal. (1983), 82, 404–417.
Rauf, M. A. and Ashraf, S. S., “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution”, Chem. Eng. J. (2009), 151, 10–18.
Sakai, H., Kanda, T., Shibata, H., Ohkubo, T., Abe, M., “Preparation of highly dispersed core/shell–type titania nanocapsules containing a single Ag nanoparticle”, J. Am. Chem. Soc. (2006), 128, 4944–4945.
Sato, S., “Photocatalytic activity of NOx–doped TiO2 in the visible light region”, Chem. Phys. Lett. (1986), 123, 1–2, 126–128.
Siefert R. L., Pehkonen S. O., Erel Y., Hoffmann M. R., “Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids”, Geochim. Cosmochim. Acta (1994), 58, 3271-3279.
Sökmen, M. and Özkan, A., “Decolourising textile wastewater with modified titania: The effects of inorganic anions on the photocatalysis”, J. Photochem. Photobiol., A (2002), 147, 77–81.
Sonawane R. S.; Kale B. B. and Dongare M. K., “Preparation and photo–catalytic activity of Fe–TiO2 thin films prepared by sol–gel clip coating”, Mater. Chem. Phys. (2004), 85, 52–57.
Sonawane, R.S.; Hegde, H.G. and Dongare, M.K., “Preparation of titanium(iv) oxide thin–film photocatalyst by sol–gel dip coating”, Mater. Chem. Phys. (2003), 77, 744–750.
Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M., Nagendra, C. L.; Philip, R., Vijayamohanan, K. and Pradeep, T., “Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core–Shell nanoparticles: One–step synthesis, characterization, spectroscopy, and optical limiting properties”, Langmuir (2003), 19, 3439–3445.
Tryba B., “Increase of the photocatalytic activity of TiO2 by carbon and iron modifications”, Int. J. Photoenergy (2008).
Uelzen, T. and Muller, J., “Wettability enhancement by rough surfaces generated by thin film technology”, Thin Solid Films. (2003), 434, 311–315.
Vamathevan V., Tse H., Amal R., Low G., McEvoy S., “Effects of Fe3+ and Ag+ ions on the photocatalytic degradation of sucrose in water”, Catal. Today (2001), 68, 201-208.
Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., “Light-induced amphiphilic surfaces”, Nature (1997), 388, 431-432.
Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J. and Shen, T., “The surface chemistry of hybrid nanometer–sized paeticles I. Photochemical deposition of gold on ultrafine TiO2 particles”, Colloids Surfaces A: Physicochem. And Eng. Aspects (1998), 131, 271–280.
Wang, J., Zhao, H., Liu, X., Li, X., Xu, P., Han, X., “Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis”, Catalysis Communications (2009), 10, 1052–1056.
Wang, W.; Zhang, J.; Chen, F.; He, D. and Anpo, M., “Preparation and photocatalytic properties of Fe3+–doped Ag@TiO2 core–shell nanoparticles”, J. Colloid Interface Sci. (2008), 323, 182–186.
Wenzel, R. N., J. Phys. Colloid Chem. (1949), 53, 1466–1467.
Wolfram, E. and Faust, R., Wenzel J.F. Faraday (Ed.), “Wetting, Spreading and Adhesion”, Academic Press, London (1978), Chapter 10.
Wu, S. X.; Ma, Z.; Qin, Y. N.; He, F.; Jia, L. S. and Zhang, Y. J., “XPS study of copper doping TiO2 photocatalyst”, Acta Phys. Chim. Sin. (2003), 19, 967–969.
Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. and Hu, M. Z.–C., “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions”, Ind. Eng. Chem. Res. (1999), 38, 373–379.
Yildiz, A.; Lisesivdin, S. B.; Kasap, M. and Mardare, D., “Non–adiabatic small polaron hopping conduction in Nb–doped TiO2 thin film”, Physica. B, Condensed matter (2009), 404, 8–11, 1423–1426.
Yin, S.; Fujishiro, Y.; Wu, J.; Aki, M. and Sato, T., “Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions”, J. Master. Proc. Tech. (2003), 137, 45–48.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N., “Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method”, Thin Solid Film (2000), 379, 7–14.
Yu, J.C. and Hu, W., “Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania”, Environ. Sci. Tech. (2005), 39, 1175-1179.
Zhang R., Gao L., “Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles”, Mater. Res. Bull (2002), 37, 1659-1666.
Zhang, F., Pi Y., Cui J., Yang Y., “Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide”, J. Phys. Chem. C (2007), 111, 3756-3761.
Zhang, H., Chen, G., “Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method”, Environ. Sci. Technol. (2009), 43, 2905–2910.
Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N., “Photooxidative N–demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation”, J. Photochem. Photobiol., A (2001), 140, 163–172.
Zhao, X. F.; Meng, X. F.; Zhang, Z. H.; Liu, L. and Jia, D. Z., “Preparation and photocatalytic activity of Pb–doped TiO2 thin films”, J. Inorg. Mater. (2004), 19, 140–146.
Zhitomirsky I., “Cathodic electrosynthesis of titanium and ruthenium oxides”, Mater. Lett. (1998), 33, 305-310.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2010-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明