參考文獻 |
N. Schultheiss and A. Newman, “Pharmaceutical Cocrystals and Their Physicochemical Properties,” Cryst. Growth Des., 9(6), 2950-2967 (2009).
P. Vishweshwar, J. A. McMahon, J. A. Bis, and M. J. Zaworotko, “Pharmaceutical Co-Crystals,” J. Pharm. Sci., 95(3), 499-516 (2006).
J. M. Lehn, “Supramolecular Chemistry: from Molecular Information Towards Self-organization and Complex Matter,” Rep. Prog. Phys., 67(3), 249-265 (2004).
O. Almarsson and M. J. Zaworotko, “Crystal Engineering of the Composition of Pharmaceutical phases. Do Pharmaceutical Co-crystals represent a New Path to Improved Medicines?” Chem. Commun., (17), 1889-1896 (2004).
A. M. Thayer, “The Choice of Pharmaceutical Crystalline Form Can be Used to Optimize Drug Properties, and Cocrystals are Emerging as New Alternatives,” Chem. Eng. News, 85(25), 17-30 (2007).
M. C. Etter, “Hydrogen Bonds as Design Elements in Organic Chemistry,” J. Phys. Chem., 95(12), 4601-4610 (1991).
M. C. Etter, “Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds,” Acc. Chem. Res., 23(4), 120-126 (1990).
N. Blagden, D. J. Berry, A. Parkin, H. Javed, A. Ibrahim, P. T. Gavan, L. L. De Matos, and C. C. Seaton, “Current Directions in Co-crystal Growth,” New J. Chem., 32(10), 1659-1672 (2008).
M. B. Hickey, M. L. Peterson, L. A. Scoppettuolo, S. L. Morrisette, A. Vetter, Guzman, J. F. Remenar, Z. Zhang, M. D. Tawa, S. Haley, M. J. Zaworotko, and Ö. Almarsson, “Performance Comparison of a Co-crystal of Carbamazepine with Marketed Product,” Eur. J. Pharm. Biopharm., 67(1), 112–119 (2007).
A. N. Sokolov, T. Friscic, and L. R. MacGillivray, “Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals,” J. Am. Chem. Soc., 128(9), 2806–2807 (2006).
H. Koshima, and M. Miyauchi, “Polymorphs of a Cocrystal with Achiral and Chiral Structures Prepared by Pseudoseeding: Tryptamine/ Hydrocinnamic Acid,” Cryst. Growth Des., 1(5), 355–357(2001).
W. Cho, H. J Lee, and M. Oh, “Growth-Controlled Formation of Porous Coordination Polymer Particles,” J. Am. Chem. Soc., 130(50), 16943–16946( 2008).
A. V. Trask, and W. Jones, “Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach,” Top Curr. Chem., 254, 41-70 (2005).
H. G. Brittain, “Photoluminescence of Pharmaceutical Materials in Solid State. 4. Fluorescence Studies of Various Solvated and Desolvated Solvatomorphs of Erythromycin A,” Volume 2007 of “Reviews in Fluorescence,” 1st Ed., (Springer, New York, USA, 2009), pp. 379-392.
Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent-Dye-Doped DNA-Surfactant Complex Films,” Adv. Mater., 12(17), 1281-1283 (2000).
G. Portalone, and M. Colapietro, “Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reation,” J. Chem. Crystallogr., 39(3), 193-200 (2009).
T. Balasubramanian, P. T. Muthiah, and W. T. Robinson, “Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate,” Bull. Chem. Soc. Jpn., 69(10), 2919-2922 (1996).
B. Sellergren, “Imprinted Polymers with Memory for Small Molecules, Proteins, or Crystals,” Angew. Chem. Int. Ed., 39(6), 1031-1037 (2000).
C. O. Pabo, “Protein-DNA Recognition,” Annu. Rev. Biochem., 53, 293-321 (1984).
A. Sarai, and H. Kono, “Protein-DNA Recognition Patterns and Predictions,” Annu. Rev. Biophys. Biomol. Struct., 34, 379-398 (2005).
D. L. Barker, and R. E. Marsh, “The Crystal Structure of Cytosine,” Acta. Cryst., 17(12), 1581-1587 (1964).
G. A. Jeffrey, and Y. Kinoshita, “The Crystal Structure of Cytosine Monohydrate,” Acta. Cryst., 16(1), 20-28 (1963).
S. Basavoju, D. Bostrom, and S. P. Velaga, “Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization,” Pharm. Res., 25(3), 530-541 (2008).
A. W. Newman and S. R. Byrn, “Solid-state analysis of the active pharmaceutical ingredient in drug products,” Drug Discovery Today, 8(19), 898-904(2003).
P. J. Haines and F. W. Wilburn, “Differential thermal analysis and differential scanning calorimetry,” Chapter 3 of “Thermal Methods of Analysis,” 1st Ed., (Blackie Academic and Professional, Scotland, England, 1995), pp. 69-114.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7) 699-709 (2001).
. D. L. Pavia, G. M. Lampman and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of “Introduction to Spectroscopy,” 3rd Ed., (Brooks/COLE Thomson Learning, Mississippi, USA, 2001), pp. 13-24.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-Handling Operation,” Chapter 5 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental Properties of Powder Beds,” Chapter 3 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 413-423.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-Handling Operation,” Chapter 5 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 659-661.
H. G. Brittain, “Methods for the Characterization of Ploymorphs and Solvates,”Chapter 6 of “Polymorphism in Pharmaceutical Solids,” (Marcel Dekker, New York, USA, 1999), pp. 227-271.
D. Giron, “Thermal Analysis, and Calorimetric Methods in the Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 245(2), 1-59 (1995).
S. D. Clas, C. R. Dalton, and B. C. Hancock, “Differential Scanning Calorimetry: Applications in Drug Development,” Pharm. Sci. Technol. Today, 2(8), 311-320 (1999).
E. Lu, N. Rodríguez-Hornedo and R. Suryanarayanan,“A rapid thermal method for cocrystal screening,” CrystEngComm, 10(6), 665 – 668(2008).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Thermal Methods,” Chapter 31 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 798-801.
N. S. Murthy and F. Reidinger, “X-ray Analysis,” Chapter 7 of “Matericals Characterization and Chemical Analysis,” (J. P. Sibilia, Wiley-Vch, New York, USA, 1996) pp. 143-149.
T. C. Huang, “Automatic X-ray Single Crystal Structure Analysis System for Small Molecule,” The Rigaku J., 21(2), 43-46 (2004).
Y. Zhang and D. J. W. Grant, “Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dehydrates,” Acta Crystallogr. C, 61(9), m435-m438 (2005).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen,” Acta Crystallogr. E: Struct. Rep. Online, 59(9), 1357-1358 (2003).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen. corrigendum,” Acta Crystallogr. E, 62(7), e17-e18 (2006).
C. Ciacovazzo, H. L. Monaco, G. Artioli, D. viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, “Experimental Method in X-ray Andneutron Crystallography,” Chapter 5 of “Fundamentals of Crystallography,” 2nd Ed., (Oxford university press, New York, USA, 2002) p. 336 .
J. P. Glusker, and K. N. Trueblood, “Experimental Measurement,” Chapter 4 of “Crystal Structure Analysis A Primer,” 2nd Ed., (Oxford university press, New York, USA, 1985), pp. 42-47.
. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Components of Optical Instrument,” Chapter 7 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
. A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Nuclear Magnetic Resonance Spectroscopy,” Chapter 19 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 445-464.
P. A. Tishmack, D. E. Bugay, and S. R. Byrn, “Solid-State Nuclear Magnetic Resonance Spectroscopy-Pharmaceutical Applications,” J. Pharm. Sci., 92(3), 441-474 (2003).
E. R. Andrew, “Magic Angle Spinning in Solid State N.M.R. Spectroscopy,” Phil. Trans. R. Soc. Lond. A, 299(1452), 505-520 (1981).
A. Alia, S. Ganapathy, and Huub J. M. de Groot, “Magic angle spinning (MAS) NMR: a new tool to study the spatial and electronic structure of photosynthetic complexes,” Photosynth. Res., 102(2-3), 415-425 (2009).
F. G. Vogt, J. S. Clawson, M. Strochmeir, A. J. Edwards, T. N. Pham, and S. A. Watson, “Solid-State NMR Analysis of Organic Cocrystals and Complexes,” Cryst. Growth Des., 9(2), 921-937 (2009).
D. Braga, L. Maini, G. de Sanctis, K. Rubini, F. Grepioni, M. R. Chierotti, and R. Gobetto, “Mechanochemical Preparation of Hydrogen-Bonded Adducts Between the Diamine 1,4-Diazabicyclo[2.2.2]octane and Dicarboxylic Acids of Variable Chain Length: An X-ray Diffraction and Solid-State NMR Study,” Chem. Eur. J., 9(22), 5538-5548 (2003).
H. G. Brittain, B. J. Elder, P. K. Isbester, and A. H. Salerno, “Solid-State Fluorescence Studies of Some Polymorphs of Diflunisal,” Pharm. Res., 22(6), 999-1006 (2005).
http://biosurface.memphis.edu/images/ConfigCoordDiag2.png, “Luminescence.”
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
R. E. Davis, K. A. Lorimer, M. A. Wilkowaki, and J. H. Rivers, “Studies of Phase Relationships in Cocrystal System,” ACA Transactions, 39, 41-61(2004).
D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N. Horton, M. B. Hursthouse, R. Storey, W. Jones, T. Fris ̌c ̌ic ́, and N. Blagden, “Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients,” Cryst. Growth Des., 8(5), 1697-1712 (2008).
http://www.laboratoryequipment.com, “Factors Affecting C, H, N Micro-Analytical”
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Automated Methods of Analysis,” Chapter 33 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 844-849.
J. Grant, “Quantitative Organic Microanalysis Based on the Methods of Fritz Pregl,” J. Am. Med. Assoc., 132(1), 52(1946).
O. P. Filho, G. P. LaTorre, and L. L. Hench, “Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5,” J. Biomed. Mater. Res., 30(4), 509-514 (1996).
A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface Crystallization Effects on The Optical and Electric Properties of CdS Nanorods,” Nanotechnology, 16(10),2402–2406 (2005).
Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and M. Muthukumar, “Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements,” Macromol., 32(3), 765-770 (1999).
H. Ahari, R. L. Bedard, C. L. Bowes, N. Coombs, O. M. Dag, T. Jiang, G. A. Ozin, S. Petrov , I. Sokolov, A. Verma, G. Vovk, and D. Young, “Effect of Microgravity on The Crystallization of a Self-assembling Layered Material,” Nature, 388(6645), 857 - 860 (1997 ).
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-Throughput Crystallization: Polymorphs, Salts Co-crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004).
D. Braga, and F. Grepioni, “Making Crystals from Crystals: a Green Route to Crystal Engineering and Polymorphism,” Chem. Commun., 7(29), 3635-3645(2005).
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-Integrated Approach from High-throughput Screening to Crystallization Optimization,” J. Therm. Anal. Calorim., 73(2), 429-440(2003).
D. J. W. Grant, “Theory and Origin of Polymorphism,” Chapter 1 of “Polymorphism in pharmaceutical solids,” (Marcel Dekker, New York, USA, 1999), pp.1-21.
C. U. Yurteri, M. K. Mazumder, N. Grable, G. Ahuja, S. Trigwell, A. S. Biris, R. Sharma, and R. A. Sims, “Electrostatic Effects on Dispersion, Transport, and Deposition of Fine Pharmaceutical Powders: Development of an Experiment Method for Quantitative Analysis,” Pharticulate Sci. Tech., 20(1), 59-79(2002).
P. York, “Solid-State Properties of Powders in the Formulation and Processing of Solid Dosage Forms,” Int. J. Pharm., 14(1), 1-28(1983).
G. Portalone, and M. Colapietro, “Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reaction,” J. Chem. Crystallogr., 39(3), 193-200 (2009).
T. Balasubramanian, P. T. Muthiah, and W. T. Robinson, “Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate,” Bull. Chem. Soc. Jpn., 69(10), 2919-2922 (1996).
S. R. Perumalla, E. Suresh, and V. R. Pedireddi, “Nucleobases in Molecular Recognition: Molecular Adducts of Adenine and Cytosine with COOH Functional Groups,” Angew. Chem. Int. Ed., 44(47), 7752-7757 (2005).
Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and Lasing form Deoxyribonucleic Acid (DNA) Thin Doped with Sulforhodamine,” Applied Optics, 46(9), 1507-1513 (2007).
J. A. Hagen, W. Li, and A. J. Steckl, “Enhanced Emission Efficiency in Organic Light-Emitting Diodes Using Deoxyribonucleic Acid Complex as an Electron Blocking Layer,” Appl. Phys. Lett., 88(17), 1-3 (2006).
H. G. Brittain, and D. J. W. Grant, “Effect of Polymorphism and Solid-State Solvation on Solubility and Dissolution Rate,” Chapter 7 of “Polymorphism in pharmaceutical solids,” (Marcel Dekker, New York, USA, 1999), pp. 279-330.
S. N. Bhattachar, L. A. Deschenesa, and J. A. Wesleya, “Solubility: It Is Not Just for Physical Chemists,” Drug Discov. Today, 11(21-22), 1012-1018 (2006).
C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997).
D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals,” AlChE J., 44(11), 2501-2514 (1998).
J. W. Mullin, “Crystal Habit Modification,” Chapter 6.4 of “Crystallization,” 3rd Ed., (Butterworth-Heinemann, London, England, 1997) pp248-250.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage from Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
N. Rasenack, and B. W. Müller, “Crystal Habit and Tabletting Behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
M. Lahav, and L. Leiserowitz, “The Effect of Solvent on Crystal Growth and Crystal Habit,” Chem. Eng. Sci., 56(7), 2245-2253 (2001).
J. Bernstein, R. J. Davey, and J. Henck, “Concomitant Polymorphs,” Angew. Chem. Int. Ed., 38(23), 3440-3461 (1999).
P. T. Cardew, and R. J. Davey, “The Kinetics of Solvent-Mediated Phase Transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985).
K. Pack, J. M. B. Evans, and A. S. Myerson, “Determination of Solubility of Polymorphs Using Differential Scanning Calorimetry,” Cryst. Growth. Des., 3(6), 991-995 (2003).
T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
L. X. Yu, M. S. Furness, A. Raw, K. P. Woodland Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe Jr., Y. Chiu and A. S. Hussain, “Scientific Considerations of Pharmaceutical Solid Polymorphism in Abbreviated New Drug Applications,” Pharm. Res., 20(4), 531-536 (2004).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-92 (2006).
D. Gao, and J. H. Raytting, “Use of Solution Calorimetry to Determine the Extent of Crystallinity of Drugs and Excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
J. Schiedt, R. Weinkauf, D. M. Neumark, and E. W. Schlag, “Anion Spectroscopy of Uracil, Thymine and the Amino-Oxo and Amino-Hydroxy Tautomers of Cytosine and Their Water Clusters,” Chem. Phys., 239(1-3), 511-524 (1998).
D. L. Barker, and R. E. Marsh, “The Crystal Structure of Cytosine,” Acta. Cryst. 17(12), 1581-1587 (1964).
G. A. Jeffrey, and Y. Kinoshita, “The Crystal Structure of Cytosine Monohydrate,” Acta. Cryst. 16(1), 20-28 (1963).
P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’ Sullivan, and D. O’ Grady, “A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes,” Org. Process Res. Dev., 9(3), 348-355 (2005).
C. P. Mark Roelands, S. Jiang, M. Kitamura, J. H. ter Horst, H. J. M. Kramer, and P. J. Jansens, “Antisolvent Crystallization of the Polymorphs of L-Histidine as a Function of Supersaturation Ratio and of Solvent Composition,” Cryst. Growth Des., 6(4), 955-963 (2006).
N. Nonoyama, K. Hanaki, and Y Yabuki, “Constant Supersaturation Control of Antisolvent-Addition Batch Crystallization,” Org. Process Res. Dev., 10 (4), 727–732 (2006).
Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal Morphology Engineering by"Tailor-Made" Inhibitors; a New Probe to Fine Intermolecular Interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
T. Togkalidou, R. D. Braatz, B. K. Johnson, O. Davidson, and A. Andrews, “Experimental Design and Inferential Modeling in Pharmaceutical Crystallization,” AIChE Journal, 47(1), 160-168 (2001).
H. G. Ibahim, F. Pisano, and A. Bruno, “Polymorphism of Phenylbutazone: Properties and Compressional Behavior of Crystals,” J. Pharm. Sci., 66(5), 669-673 (1977).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Major Spectra-Structure Correlations by Spectral Regions,” Chapter 13 of “Introduction to Infrared and Raman Spectroscopy,” 3rd Ed., (Academic press Inc, New York, USA, 1991), p. 394.
M. Klussmann, T. Izumi, P. J. A. White, A. Armstrong, G. D. Blackmond, “Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids,” J. Am. Chem. Soc., 129(24), 7657-7660 (2007).
P. Vishweshwar, J. A. McMahon, J. A. Bis, and M. J. Zaworotko, “Pharmaceutical Co-Crystals,” J. Pharm. Sci., 95(3), 499-516 (2006).
G. P. Stahly, “A Survey of Cocrystals Reported Prior to 2000,” Cryst. Growth Des., 9(10), 4212-4229 (2009).
C. L. Cooke, and R. J. Davey, “On the Solubility of Saccharinate Salts and Cocrystals,” Cryst. Growth Des., 8(10), 3483-3485 (2008).
M. Viertelhaus, R. Hilfiker, F. Blatter, and M. Neuburger, “Piracetam Co-Crystals with OH-Group Functionalized Carboxylic Acids,” Cryst. Growth Des., 9(5), 2220-2228 (2009).
D. J. Good, and N. Rodríguez-Hornedo, “Solubility Advantage of Pharmaceutical Cocrystals,” Cryst. Growth Des., 9(5), 2252-2264 (2009).
C. O. Pabo, “Protein-DNA Recognition,” Annu. Rev. Biochem., 53, 293–321(1984).
A. Fayasankar, A. Somwangthanaroj, Z. J. Shao, and N. Rodríguez-Hornedo, “Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase,” Pharm. Res., 23(10), 2381-2392 (2006).
M. C. Etter, “Hydrogen Bonds as Design Elements in Organic Chemistry,” J. Phys. Chem., 95(12), 4601-4610 (1991).
S. Basavoju, D. Bostrom, and S. P. Velaga, “Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization,” Pharm. Res., 25(3), 530-541 (2008).
D. P. McNamara, S. L. Childs, J. Giordano, A. Iarriccio, J. Cassidy, M. S. Shet, R. Mannion, E. O’Donnell, and A. Park., “Use of A Glutaric Acid Cocrystal to Improve Oral Bioavailability of A Low Solubility API,” Pharm. Res., 23(8), 1888-1897 (2006).
J. H. ter Horst, M. A. Deij, and P. W. Cains, “Discovering New Co-Crystals,” Cryst. Growth Des., 9(3), 1531–1537(2009).
G. G. Z. Zhang, R. F. Henry, T. B. Borchardt, and X. Lou, “Efficient Co-crystal Screening Using Solution-Mediated Phase Transformation,” J. Pharm. Sci., 96(5), 990–995 (2007).
A. V. Trask, W. D. Samuel Motherwell, and W. Jones, “Solvent-Drop Grinding: Green Polymorph Control of Co-crystallization,” Chem. Commun., (7), 890–891 (2004).
D. R. Weyna, T. Shattock, P. Vishweshwar, and M. J. Zaworotko, “Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs. Slow Evaporation,” Crys. Growth Des., 9(2), 1106–1123 (2009).
E. Gagniere, D. Mangin, F. Puel, C. Bebon, J. P. Klein, O. Monnier, and E. Garcia, “Cocrystal Formation in Solution: In Situ Solute Concentration Monitoring of the Two Components and Kinetic Pathways,” Cryst. Growth Des., 9(8), 3376–3383 (2009).
T. Fris ̌c ̌ic ́, S. L. Childs, S. A. A. Rizvi, and W. Jones, “The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallization Outcome,” CrystEngComm, 11(3), 418–426 (2009).
D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N. Horton, M. B. Hursthouse, R. Storey, W. Jones, T. Fris ̌c ̌ic ́, and N. Blagden, “Applying Hot-Stage Microscopy to Co-crystal Screening: A Study of Nicotinamide with Seven Active
Pharmaceutical Ingredients,” Cryst. Growth Des. 8(5), 1697– 1712 (2008).
E. Lu, N. Rodríguez-Hornedo, and R. Suryanarayanan, “A Rapid Thermal Method for Cocrystal Screening,” CrystEngComm, 10(6), 665–668 (2008).
A. R. Ling and J. L. Baker, “Halogen derivatives of quinine. Part III. Derivatives of quinhydrone.,” J. Chem. Soc., 63, 1314-1327 (1893).
A. V. Trask, N. Shan, W. D. S. Motherwell, W. Jones, S. Feng, R. B. H. Tan, and K. J. Carpenter, “Selective Polymorph Transformation via Solvent-drop Grinding,”Chem. Commun., (7), 880-882 (2005).
A. V. Trask, J. van de Streek, W. D. Samuel Motherwell, and W. Jones, “Achieving Polymorphic and Stoichiometric Diversity in Co-crystal Formation: Importance of Solid-State Grinding, Powder X-ray Structure Determination, and Seeding,” Crys. Growth Des., 5(6), 2233-2241 (2005).
N. Blagden, D. J. Berry, A. Parkin, H. Javed, A. Ibrahim, P. T. Gavan, L. L. De Matos and C. C. Seaton, “Current Directions in Co-crystal Growth,” New J. Chem., 32(10), 1659-1672 (2008).
N. Shan, F. Toda, and W. Jones, “Mechanochemistry and Co-crystal Formation: Effect of Solvents on Reaction Kinetics,” Chem. Commun., (20), 2372-2373 (2002).
T. Fris ̌c ̌ic ́, and W. Jones, “Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding,” Crys. Growth Des., 9(3), 1621-1637 (2009).
A. V. Trask, W. D. Samuel Motherwell, and W. Jones, “Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration,” Crys. Growth Des., 5(3), 1013-1021 (2005).
A. V. Trask, and W. Jones, “Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach,” Top Curr. Chem., 254, 41-70 (2005).
M. Perakyla, “A Model Study of the Enzyme-Catalyzed Cytosine Methylation Using ab Initio Quantum Mechanical and Density Functional Theory Calculations: pKa of the Cytosine N3 in the Intermediates and Transition States of the Reaction,” J. Am. Chem. Soc., 120(49), 12895-12902 (1998).
M. A. Zolfigol, “An Efficient and Chemoselective Method for Oximination of β-Diketones Under Mild and Heterogeneous Conditions,” Molecules, 6(8), 694-698 (2001).
T. J. Strathmann, and S. C. B. Mayneni, “Speciation of Aqueous Ni(II)-Carboxylate and Ni(II)-Fulvic Acid Solutions: Combined ATR-FTIR and XAFS analysis,” Geochim. Cosmochim. Acta, 68(17), 3441-3458 (2004).
H. Thakuria, B. M. Borah, A. Pramanik, and G. Das, “Solid State Synthesis and Hierarchical Supramolecular Self-assembly of Organic Salt Cocrystals,” J. Chem. Crystallogr., 37(12), 807-816 (2007).
F. G. Vogt, J. S. Clawson, M. Strohmeier, A. J. Edwards, T. N. Pham, and S. A. Watson, “Solid-State NMR Analysis of Organic Cocrystals and Complexes,” Cryst. Growth Des., 9(2), 921-937 (2009).
S. L. Child, G. Patrick Stahly, and A. Park, “The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State,” Mol. Pharmaceutics, 4(3), 323-338 (2007).
S. L. Johnson, and K. A. Rumon, “Infrared Spectra of Solid 1:1 Pyridine-Benzoic Acid Complexes; the Nature of the Hydrogen Bond as a Function of the Acid-Base Levels in the Complex,” J. Phys. Chem., 69(1), 74-86 (1965).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Carbonyl Compounds,” Chapter 9 of “Introduction to infrared and Raman spectroscopy,” 3rd Ed., (Axademic Press Inc., New York, USA, 1990), pp. 315,318.
G. Smith, D. E. Lynch, K. A. Byriel, and C. H. L. Kennard, “The Utility of 4-Aminobenzoic Acid in Promotion of Hydrogen Bonding in Crystallization Process: the Structures of the Cocrystals with Halo and Nitro Substituted Aromatic Compounds, and the Crystal Structures of the Adducts with 4-Nitroniline (1:1), 4-(4-Nitrobenzyl)pyridine (1:2), and (4-Nitrophenyl)acetic acid (1:1),” J. Chem. Crystallogr., 27(5), 307-317 (1997).
C. B. Aakeroy, J. Desper, and M. E. Fasulo, “Improving Success Rate of Hydrogen-Bond Driven Synthesis of Co-crystals,” CystEngComm, 8(8), 586-588 (2006).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Amines, C=N, and N=O Compounds,” Chapter 11 of “Introduction to infrared and Raman spectroscopy,” 3rd Ed., (Axademic Press Inc., New York, USA, 1990), pp, 340,388.
K. Ataka, and M. Osawa, “In Situ Infrared Study of Cytosine Adsorption on Gold Electrodes,” J. Electroanal. Chem., 460(1), 188-196 (1999).
R. Gobetto, C. Nervi, E. Valfre, M. R. Chierotti, D. Braga, L. Maini, F. Grepioni, R. K. Harris, and P. Y. Ghi,“1H MAS, 15N CPMAS, and DFT Investigation of Hydrogen-Bonded Supramolecular Adducts between the Diamine 1,4-Diazabicyclo-[2.2.2]octane and Dicarboxylic Acids of Variable Chain Length,” Chem. Mater., 17(6), 1457-1466 (2005).
N. Schultheiss, and A. Newman, “Pharmaceutical Cocrystals and Their Physicochemical Properties,” Cryst. Growth Des., 9(6), 2950-2967 (2009).
B. Furtig, C. Richter, J. Wohnert, and H. Schwalbe, “NMR spectroscopy of RNA,” ChemBioChem, 4(10), 936-962 (2003).
J. S. Clawson, F. G. Vogt, J. Brum, J. Sisko, D. B. Patience, W. Dai, S. Sharpe, A. D. Jones, T. N. Pham, M. N. Johnson, and R. C. P. Copley, “Formation and Characterization of Crystals Containing a Pleuromutilin Derivative, Succinic Acid and Water,” Cryst. Growth Des., 8(11), 4120-4131 (2008).
E. Breitmaier, and W. Voelter, “Carbonyl Compounds,” Chapter 4 of “Carbon-13 NMR spectroscopy,” 3rd Ed., (VCH, New York, USA, 1987), p.226.
K. Bouchmella, S. G. Dutremez, B. Alonso, F. Mauri, and C. Gervais, “1H, 13C, and 15N Solid-State NMR Studies of Imidazole- and Morpholine-Based Model Compounds Possessing Halogen and Hydrogen Bonding Capabilities,” Cryst. Growth Des., 8(11), 3941-3950 (2008).
R. Gobetto, C. Nervi, M. R. Chierotti, D. Braga, L. Maini, F. Grepioni, R. K. Harris, and P. Hodgkinson, “Hydrogen Bonding and Dynamic Behavior in Crystals and Polymorphs of Dicarboxylic-Diamine Adducts: A Comparison between NMR Parameters and X-ray Diffraction Studies,” Chem. Eur. J., 11(24), 7461-7471 (2005).
J. Florian, V. Baumruk, and J. Leszczynski, “IR and Raman Spectra, Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields of Protonated Cytosine,” J. Phys. Chem., 100(13), 5578-5589 (1996).
W. Saenger, “Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking,” Chapter 6 of “Principles of Nucleic Acid Structure,” (Springer-Verlag, New York, USA, 1984), pp. 118-124.
A. Jayasankar, L. Sreenivas Reddy, S. J. Bethune, and N. Rodríguez-Hornedo, “Role of Cocrystal and Solution Chemistry on the Formation and Stability of Cocrystals with Different Stoichiometry,” Cryst. Growth Des., 9(2), 889-897 (2009).
S. J. Nehm, B. Rodríguez-Spong, and N. Rodríguez-Hornedo, “Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation,” Cryst. Growth Des., 6(2), 592-600 (2006).
|