博碩士論文 973204051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.224.59.107
姓名 蕭智遠(Chih-yuan Hsiao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用原子轉移自由基聚合方式製備刷狀結構的二氧化矽次微米球之研究
(The Study on Preparation of Brush Submicrospheres byAtom Transfer Radical Polymerization (ATRP))
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討利用原子轉移自由基聚合(ATRP)製備高分子刷狀結構之SiO2次微米球,並且探討不同尺寸大小之均一粒徑SiO2次微米球的製備,以及其光子晶體之排列。
首先利用Stöber所提方法,以四乙氧基矽烷(TEOS)作為單體,可成功合成出158 nm ~ 700 nm之均一粒徑的SiO2次微米球,其Cv值皆小於4%,並將此次微米球經由自組裝排列形成光子晶體,其光子能隙(PBG)可涵蓋整個可見光波段及近紅外光範圍,並呈現出不同的結構性色彩。
由於ATRP是利用粒子表面的鹵素基去進行高分子刷狀結構的聚合反應,因此選用286 nm之SiO2次微米球以3-氯丙基三乙氧基矽烷(CPTS)進行表面改質,以形成表面帶有氯基之SiO2次微米球(即SiO2-Cl),經由化學分析能譜儀(ESCA)進行表面元素的分析,可觀察出約在198ev位置有氯元素鍵結能(binding energy)波峰的出現,顯示氯基確實存在次微米球的表面。
最後將不同氯基濃度之SiO2-Cl粒子利用ATRP聚合反應製備刷狀結構之SiO2次微米球(SiO2-g-PMMA),反應系統中以氯化亞銅(CuCl)當金屬觸媒,以N,N,N’’,N",N"-pentamethyldiethylenetriamine (PMDETA)當作螯合劑,合成出的高分子PMMA重量比率為5.6 % ~ 10.5 %,並經由掃描式電子顯微鏡(SEM)以及穿透式電子顯微鏡(TEM)可證明SiO2-g-PMMA粒子上的PMMA部分約6 nm,由以上結果顯示,本實驗已經可以成功製備出均一粒徑具刷狀結構之SiO2-g-PMMA粒子。
摘要(英) The preparation of highly monodisperse silica submicrospheres (SiO2), SiO2 with Chloro- functional group (SiO2-Cl), and silica-g-poly(methyl methacrylate) submicrospheres (SiO2-g-PMMA) have been discussed.
At first, diameter of 158 to 700 nm were prepared by Stöber method. Three dimensional photonic crystals (PCs) were obtained by self- assembling of SiO2. Experimental λ max, obtained from UV Vis spectrophotometer, were consistent with photonic band gap (PBG), calculated from Bragg’’s Law, on 0° to 60°reflection angles. In other words, the structure color of PCs was corresponded to the PBG.
Secondly, SiO2 was modified by (3-Chloropropyl) triethoxysilane (CPTS) to form Cl end-functional group on the surface (SiO2-Cl). The Chloro group was detected at about 198ev position by Electron Spectroscopy for Chemical Analysis (ESCA).
Finally, SiO2-g-PMMA was obtained by atom transfer radical polymerization (ATRP) of SiO2-Cl in the presence of MMA using copper(I) chloride and N,N,N’’,N",N"-pentamethyldiethylenetriamine as catalyst precursors. The resulted showed that 5.6 % ~ 10.5 % grafted percentage of PMMA on SiO2-g-PMMA were characterized by Thermogravimetric Analyzer (TGA). In addition, 6 nm thickness of PMMA was observed by SEM and TEM. These results demonstrated that brush submicrospheres were synthesized successfully by ATRP.
關鍵字(中) ★ 光子晶體
★ 表面改質
★ 原子轉移自由基聚合
★ Stöber
★ 均ㄧ粒徑次微米球
關鍵字(英) ★ Stöber
★ Self-assembly
★ Monodispersed submicrospheres
★ ATRP
★ Surface modification
★ Photonic crystals
論文目次 摘要..........................................................................................................................................I
Abstract................................................................................................................................... II
謝誌....................................................................................................................................... III
目錄.......................................................................................................................................IV
圖目錄...................................................................................................................................VI
表目錄................................................................................................................................ VIII
第一章 緒論............................................................................................................................ 1
第二章 實驗............................................................................................................................ 7
2-1 實驗藥品....................................................................................................................... 7
2-2 實驗儀器....................................................................................................................... 9
2-3 實驗方法..................................................................................................................... 10
2-3-1 均一粒徑二氧化矽次微米球之製備.................................................................. 10
2-3-2 利用自組裝排列製備光子晶體......................................................................... 10
2-3-3含氯基二氧化矽次微米球(SiO2-Cl)之製備..................................................... 11
2-3-4 以原子轉移自由基聚合方式製備刷狀結構的次微米球................................. 12
2-4 儀器分析..................................................................................................................... 13
2-4-1 傅立葉轉換紅外線光譜儀(FTIR)測試條件...................................................... 13
2-4-2 掃描式電子顯微鏡(SEM)測試條件................................................................... 13
2-4-3 化學分析電子光譜儀(ESCA)測試條件............................................................. 14
2-4-4 熱重損失儀(TGA)測試條件............................................................................... 14
2-4-5 紫外-可見光光譜儀(UV-Vis)測試條件............................................................. 14
2-4-6 動態粒徑分析儀(DLS)測試條件....................................................................... 15
第三章 結果與討論.............................................................................................................. 16
3-1 均一粒徑次微米球之製備.......................................................................................... 16
3-1-1 R值對二氧化矽次微米球之探討........................................................................ 17
3-1-2 R值固定同時提高水與單體含量對二氧化矽次微米球之探討........................ 21
3-1-3 單體含量多寡對二氧化矽次微米球之探討...................................................... 25
3-1-4 NH4OH與溫度對二氧化矽次微米球之探討..................................................... 31
3-1-5 次微米球尺寸改變之探討................................................................................. 33
3-1-6 利用自組裝排列製備光子晶體之研究............................................................. 34
3-1-6-1 反射角為0°時,不同粒徑之次微米球對自組裝排列之影響...................... 34
3-1-6-2 各種反射角下,286 nm之SiO2對自組裝排列之影響.................................. 37
3-2含氯基二氧化矽次微米球(SiO2-Cl)之製備............................................................. 40
3-3 以原子轉移自由基聚合方式製備刷狀結構的次微米球之研究............................. 49
3-3-1 刷狀次微米球粒徑及表面形態之探討.............................................................. 49
3-3-2 刷狀次微米球的高分子接枝含量之探討.......................................................... 58
第四章 結論.......................................................................................................................... 64
參考文獻............................................................................................................................... 66
參考文獻 [1] E.Yablonovitch,” Inhibited spontaneous emission in solid-state physics
and electronics”, Phys. Rev. Lett., Vol 58, pp. 2059, 1987
[2] S. John,” Strong localization of photons in certain disordered dielectric
superlattices”, Phys. Rev. Lett., Vol 58, pp.2486, 1987
[3] S. Kaur, S. Sahoo, P. Ajayan et al., ”Capillarity-driven assembly of
carbon nanotubes on substrates into dense vertically aligned arrays”,
Adv. Mater., Vol 19, pp.2984-2987, 2007
[4] K. Liu, T. A. Schmedake, and R. Tsu, ”A comparative study of
colloidal silica spheres: photonic crystals versus Bragg's law”,
Phys. Lett. A, Vol 372, pp.4517-4520, 2008
[5] Stöber, W., Fink, A., Bohn, E., ”Controlled growth of monodisperse
silica spheres in the micron size range”, J. Colloid Interface Sci.,
Vol 26, pp.62-69, 1968
[6] Y. Z. Zhu, Y. L. Cao, J. Ding et al., ”Three-dimensional photonic
bandgapcrystals of titania hollow spheres at visible wavelengths”,
Appl. Phys. A -Mater. Sci. Vol 94, pp.731-734, 2009
[7] Y. Wang, J. Zheng, W. Brittain, Z.D.Cheng, ”Rapid synthesis
of monodisperse polymer spheres for self-assembled photonic
crystals”, Colloids Surf., A , Vol 302, pp. 312-319, 2007
[8] 張明仁“聚烯烴/氫氧化鎂奈米複合材料之合成與應用"中原大學
化學系博士論文, 2007
[9] T. E. Patten and K. Matyjaszewski, ”Stabilization of transition metal
complexes for catalysis in diverse environments”, Adv. Mat., Vol 12,
pp.901-915, 1998
[10] T. E. Patten and K. Matyjaszewski, ”Copper(I)-catalyzed atom
transfer radical polymerization”, Acc. Chem. Res., Vol 32, pp.895,
1999
[11] J. Gromada and K. Matyjaszewski, ”Simultaneous reverse and normal
initiation in atom transfer radical polymerization”, Macromolecules,
Vol 34, pp.7664, 2001
[12] Hong Zhang, Xiping Lei, Zhixing Su, Peng Liu, ” A novel method of
surface-initiate atom transfer radical polymerization of styrene from
silica nanoparticles for preparation of monodispersed core-shell hybrid
nanospheres” J Polym Res, Vol 14, pp.253-260, 2007
[13] Y. H. Kim, W. T. Ford, T. H. Mourey, ”Branched
poly(styrene-b-tert-butyl acrylate) and poly(styrene-b-acrylic acid) by
ATRP from a dendritic poly(propylene imine)(NH2)64 core ”
J. Polym. Sci., Part A: Polym. Chem., Vol 45, pp.4623, 2007
[14] Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu
Akiyama, Hideko Kanazawa, Teruo Okano, ”Interfacial property
modulation of thermoresponsive polymer brush surfaces and their
interaction with biomolecules”, Langmuir, Vol 23, pp.9409, 2007
[15] Toshihiko Arita, Yuzo Kayama, Kohji Ohno, Yoshinobu Tsujii,
Takeshi Fukuda, ”High-pressure atom transfer radical polymerization
of methyl methacrylate for well-defined ultrahigh molecular-weight
polymers”, Polymer, Vol 49, pp.2426, 2008
[16] Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu
Akiyama,Hideko Kanazawa, Teruo Okano, ”Preparation of
thermoresponsive cationic copolymer brush surfaces and application
of the surface to separation of biomolecules”, Biomacromolecules,
Vol 9, pp.1340-1347, 2008
[17] Abul K. Mallik, Makoto Takafuji, Hirotaka Ihara, ” Tuning of the
molecular packing structure of comb-shaped polymer-grafted silica by
using surface-initiated ATRP to enhance the molecular-shape
selectivity towards polycyclic aromatic hydrocarbons”, Eur. Polym.
J.,Vol 6, pp.140-155, 2009
[18] Chinlun Huang, Tyler Tassone, Kendra Woodberry, Dan Sunday, and
David L. Green, ”Impact of ATRP initiator spacer length on grafting
poly(methyl methacrylate) from silica nanoparticles”, Langmuir, Vol
25, pp.13351-13360, 2009
[19] Kejian Zhang, Jianli Wang, Ramesh Subramanian, Zhibin Ye,
Jianmei Lu,Qiang Yu, ”Chain Walking Ethylene Copolymerization
with an ATRP Inimer for One-Pot Synthesis of Hyperbranched
Polyethylenes Tethered with ATRP Initiating Sites”, Macromol. Rapid
Commun., Vol 28, pp.2185-2191, 2007
[20] Bindushree Radhakrishnan, Andrew N. Constable, William J. Brittain,
”A Novel Route to Organic–Inorganic Hybrid Nanomaterials”,
Macromol. Rapid Commun., Vol 29, pp.1828-1833, 2008
[21] Y. Deng, T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang,
C.Liu, X.Wu, and D. Zhao, ”Ordered mesoporous silicas and carbons
with large accessible pores templated from amphiphilic diblock
copolymer poly(ethylene oxide)- b -polystyrene”, J. AM. CHEM.
SOC., Vol 129, pp.1690-1697, 2007
[22] Zhongli Lei_, Yanli Li, Xiangyu Wei, ”A facile two-step modifying
process for preparation of poly(SStNa)-grafted Fe3O4/SiO2 particles”,
J. Solid State Chem., Vol 181, pp.480-486, 2008
[23] Lilin Zhou, Weizhong Yuan, Jinying Yuan, Xiaoyin Hong,
”Preparation of double-responsive SiO2-g-PDMAEMA
nanoparticles via ATRP” , Mater. Lett., Vol 62, pp.1372-1375, 2008
[24] G. K. Raghuraman, R. Dhamodharan, Oswald Prucker, and Ju1rgen
Ru1he, ” A robust method for the immobilization of polymer
molecules on SiO2 surfaces”, Macromolecules, Vol 41, pp.873-878,
2008
[25] Muhammad Ejaz, Shinpei Yamamoto, Kohji Ohno, Yoshinobu Tsujii,
and Takeshi Fukuda, ”Controlled graft polymerization of methyl
methacrylate on silicon substrate by the combined use of the
langmuir-blodgett and atom transfer radical polymerization”,
Techniques Macromolecules, Vol 31, pp.5934-5936, 1998
[26] Jin-Shan Wang and Krzysztof Matyjaszewski, ”Controlled/"Living"
Radical Polymerization. Halogen Atom Transfer Radical
Polymerization Promoted by a Cu(I)/Cu(I I) Redox Process”,
Macromolecules, Vol 28, pp.7901-7910, 1995
[27] F. Wen, W. Zhang, P. Zheng, X. Zhang, X. Yang, Y. Wang, X. Jlang,
G. Wei, L. Shi, ”One-stage synthesis of narrowly dispersed polymeric
core-shell microspheres”, J. Polym. Sci., Part A: Polym. Chem., Vol.
46, 1192-1202, 2008
[28] Arnaud Gilles, Jean Martinez, and Florine Cavelier, ”Supported
Synthesis of Oxoapratoxin A”, J. Org. Chem., Vol 74, pp.4298-4304,
2009
[29] Rabi Inoubli, Sylvie Dagre´ou, Alain Lapp, Laurent Billon, and Jean
Peyrelasse, ”Nanostructure and Mechanical Properties of
Polybutylacrylate Filled with Grafted Silica Particles”, Langmuir,
Vol 22, pp.6683-6689 2006
[30] 胡毓祥“新穎活性自由基聚合之研究"成功大學化學工程系博士
論文, 2005
[31] 林惠敏“均一粒徑次微米球之合成與自組裝排列之研究"中央大
學化學工程與材料工程學系碩士論文, 2008
[32] 羅名譽“快速合成具有核殼結構之均一粒徑次微米球與其表面改
質之特性研究"中央大學化學工程與材料工程學系碩士論文,
2009
指導教授 陳暉(Hui Chen) 審核日期 2010-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明