參考文獻 |
1 C. F. Chyba, “Origins of Life: A Left-Handed Solar System?” Nature, 389 (6648), 234–235 (1997).
2 L. Addadi, and S. Weiner, “Biomineralization: Crystals, Asymmetry, and Life,” Nature, 411 (6839), 753–755 (2001).
3 S. L. Miller, “A Production of Amino Acids Under Possible Primitive Earth Conditions,”
Science, 117 (3046), 528–529 (1953).
4 S. F. Mason, “Origins of Biomolecular Handedness,” Nature, 311 (5981), 19–23 (1984).
5 D. K. Kondepudi, R. J. Kaufman, and N. Singh, “Chiral Symmetry Breaking in Sodium Chlorate Crystallization,” Science, 250 (4983), 975–976 (1990).
6 Y. Song, W. Chen, and X. Chen, “Ultrasonic Field Induced Chiral Symmetry Breaking of NaClO3 Crystallization,” Cryst. Growth Des., 8 (5), 1448–1450 (2008).
7 P. Cintas, “Chirality of Living Systems: A Helping Hand from Crystals and Oligopeptides,” Angew. Chem., Int. Ed., 41 (7), 1139–1145 (2002).
8 R. M. Hazen, T. R. Filley, and G. A. Goodfriend, ”Selective Adsorption of L- and D-Amino Acids on Calcite: Implications for Biochemical Homochirality,” Proc. Natl. Acad. Sci. U.S.A., 98 (10), 5487–5490 (2001) .
9 K. Kinbara, Y. Tagawa, and K. Saigo, “Probability of Spontaneously Resolvable Conglomerates for Racemic Acid/Racemic Amine Salts Predicted on the Basis of the Results of Diastereomeric Resolutions,” Tetrahedron- Asymmetry, 12 (21), 2927– 2930 (2001).
10 L. P. Bereczki, E. alovics, P. Bombicz, G. Pokol, E. Fogassy, and Marthi, K. “Optical Resolution of N-Formylphenylalanine Suceeds by Crystal Growth Rate Differences of Diastereomeric Salts,” Tetrahedron- Asymmetry, 18 (2), 260–264 (2007).
11 K. Soai, S. Osanai, K. Kadowaki, S. Yonekubo, T. Shibata, and I. Sato, “D- and L-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound,” J. Am. Chem. Soc., 121 (48), 11235–11236 (1999).
12 M. P. Bernstein, J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola, “Racemic Amino Acids from the Ultraviolet Photolysis of Interstellar Ice Analogues” Nature, 416 (6879), 401– 403 (2002).
13 T. Kawasaki, K. Jo, H. Igarashi, I. Sato, M. Nagano, K. H. Koshima, and K. Soai, “Asymmetric Amplification Using Chiral Cocrystals Formed from Achiral Organic Molecules by Asymmetric Autocatalysis,” Angew. Chem., 117 (18), 2834–2837 (2005).
14 T. Kawasaki, K. Suzuki, Y. Hakoda, and K. Soai, “Achiral Nucleobase Cytosine Acts as an Origin of Homochirality of Biomolecules in Conjunction with Asymmetric Autocatalysis,” Angew. Chem., Int. Ed., 47(3), 496–499 (2008).
15 K. Klussmann, T. Izumi, A. J. P. White, A. Armstrong, and D. G. Blackmond,“Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids,” J. Am. Chem. Soc., 129 (24), 7657–7660 (2007).
17 C. Viedma, J. E. Ortiz, T. Torres, T. Izumi, and D. G. Blackmond, “Evolution of Solid Phase Homochirality for a Proteinogenic Amino Acid” J. Am. Chem. Soc., 130 (46), 15274–15275 (2008).
18 S. Zhang, “Emerging Biological Materials Through Molecular Self-Assembly,” Biotech.
Adv. 20(5), 321-339 (2002).
19 M. C. Gohel, “Overview on Chirality and Applications of Stereo-Selective Dissolution
Testing in the Formulation and Development Work,” Dissolution. Technologies. 10(3), 16-20
(2003).
20 G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant, “Racemic
Compound of Species of Sodium Ibuprofen: Characterization and Polymorphic Relationships,” J. Pharm. Sci. 92(7), 1356-1366 (2003).
21 Y. Wang, and A. M. Chen, “Enantioenrichment by Crystallization” Org. Process Res. 12
(2), 282–290 (2008).
T. R. Kommuru, M. A. Khan, and I. K. Reddy, “Racemate and Enantiomers of Ketoprofen:
Phase Diagram, Thermodynamic Studies, Skin Permeability, and Use of Chiral Permeation
Enhancers,” J. Pharm. Sci. 87(7), 833-840 (1998).
23 J. Jacques, A. Collet, and S. H. Wilen, “Solution Properties of Enantiomers and Their Mixtures,”Ch 3 of Enantiomers, Racemates, and Resolutions (John Wiley & Sons, Inc. New York, 1981), pp. 201-207.
24 H. Lorenz, A. Perlberg , D. Sapoundjiev, M. P. Elsner , and A. Seidel-Morgenstern, “Crystallization of Enantiomers” Chem.Eng. Prog., 45 (10), 863-873 (2006).
1. D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of Introduction to Spectroscopy, Third Edition, (Brooks/COLE Thomson Learning, Mississippi, USA, 2001), pp. 13-24.
2. R. E. Reed-hill, “Analytical Methods,” Chapter 2 of Physical Metallurgy Principles, Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
3. T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
4 http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
5. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of Principles of Instrumental Analysis, 5th ed., (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
6. R. E. Reed-hill, “Analytical Methods,” Chapter 2 of Physical Metallurgy Principles, Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
7. E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak, “DSC and Adiabatic Calorimetry Study of The Polymorphs of Paracetamol,” J. Them. Anal. Calor., 77(2), 607-623 (2004).
8. S. D. Clas, C. R. Dalton, and B. C. Hancock, “Differential Scanning Calorimetry: Applications in Drug Development,” Pharm. Sci. Technolo. Today, 2(8), 311-320 (1999).
9. B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General Principles of Pharmaceutical Solid Polymorphism a Supramolecular Perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004).
10. D. Giron, “Thermal Analysis, and Calorimetric Methods in The Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 245(2), 1-59 (1995).
11. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Thermal Methods,” Chapter 31 of Principles of Instrumental Analysis, 5thed., (Thomson Learning, Mississippi, USA, 2001), pp. 798-801.
12 D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy: A Guide for students of Organic Chemistry, 3rded., (Thomson Learning, Inc., state USA, 2001), pp.45-68.
13 B. Hinterstoisser, and L. Salmén, “Two-dimensional Step-scan FTIR : A Tool to Unravel the OH-Valency-Range of the Spectrum of Cellulose I,” Cell., 6(3), 251-263 (1999)
14 A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
15 N. S. Murthy, and F. Reidinger, “X-ray analysis,” Chapter 7 in Matericals characterization and chemical analysis, J. P. Sibilia, (Wiley-Vch , New York, USA, 1996) pp. 143-149.
16 M. Davidovich, J. Dimarco, J. Z. Gougoutas, R. P. Scaringe, I. Vitez, S. Yin, “Detection of Polymorphic Artifacts in Powder X-ray Diffraction Determination,” Am. Pharm. Rev., 138 (1), 1-2 (1996).
17 T. C. Huang, “Automatic X-ray Single Crystal Structure Analysis System for Small molecule,” The Rigaku J., 21(2), 43-46 (2004)
18. R. Potter, “An X-ray Single-Crystal Linear Diffractometer,” J. Sci. Instrum., 39(7), 379-380 (1962).
19 S. L. Wang, Y. J. Fu, W. C. Zhang, X. Sun, and Z. S. Gao, “In-line Bulk Concentration Measurement by Method of Conductivity in Industrial KDP Crystal Growth form Aqueous Solution,” Cryst. Res. Technol., 35(9), 1027-1034 (2000).
20 P. A. Corrigan, V. E. Lyons, G. D. Baranes, and F. G. Hall, “Conductivity Measurements Monitor Waste Streams,” Envir. Sci. Tech. 4(2): 116-121 (1970).
21 O. D. Linnikov, “Spontaneous Crystallization of Potassium Chloride from Aqueous and Aqueous-Ethanol Solutions & Part I: Kinetics and Mechanism of the Crystallization process,” Cryst. Res. Technol., 39(6), 516-528 (2004).
22 I. Kabdasli, S. A. Parsons, and O. Tünay, “Effect of Major Ions on Induction Time of Struvite Precipitation,” CCACAA., 79(2), 243-251 (2006).
23 L. X. Yu, R. A. Lionberger, A. S. Raw, R. D‟Costa, H. Wu, and A. S. Hussain, “Application of Process Analytical Technology to Crystallization Processes,” Adv. Drug. Del. Rev., 56(3), 349-369 (2004)
24 J. Workman, Jr., D. J. Veltkamp, S. Doherty, B. B. Anderson, K. E. Creasy, M. Koch, J. F. Tatera, A. L. Robinson, L. Bond, L. W. Burgess, G. N. Bokerman, A. H. Uiiman, G. P. Darsey, F. Mozayeni, J. A. Bamberger, and M. S. Greenwood, “Process Analytical Chemistry,” Anal.
46
Chem., 71(12), 121R-180R (1999)
1 K. J. Roberts, R. Docherty, P. Bennema, and L . A. M J Jetten, “The Importance of
Considering Growth-induced Conformational Change in Predicting the Crystal Habit of
Benzophenone,” J. Phys. D:Appl. Phys. 26 (B8), B7-B21 (1993).
2 T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight Into the Role of
Solvent,” Org. Process Res. Dev. 4 (5), 384-390 (2000).
3 S. Gracin, and A. C. Rasmuson, “Solubility of Phenylacetic acid, P-hydroxyphenylacetic
acid, P-aminophenylacetic Acid, P-hydroxybenzoic Acid, and Ibuprofen in Pure Solvents,” J.
Chem. Eng. Data. 47 (6), 1379-1383 (2002).
4 T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T.
Mitani, “Improved Lifetime of an OLED Using Aluminum (III) Tris (8-hydroxyquinolate),”
Sci. Tech. Adv. Matt. 5 (3), 331–337 (2004).
5 A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale Rapid Melting and
Crystallization of Semiconductor Thin Films,” Nanoletters 5 (10), 1924-1930 (2005).
6 K.J. Kim, H.S. Kim, “Coating of Energetic Materials Using Crystallization,” Chem. Eng.
Technol. 28 (8), 946 – 951 (2005).
7 H. Lorenz, A. Perlberg , D. Sapoundjiev, M. P. Elsner , and A. Seidel-Morgenstern“Crystallization of Enantiomers” Chem.Eng. Prog., 45 (10), 863-873 (2006).
8 Y. Wang, and A. M. Chen, “Enantioenrichment by Crystallization” Org. Process Res. 12 (2),
282–290 (2008).
9 T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal
Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30 (10),
72-92 (2006).
10 T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, Polymorphism, Crystallinity, Crystal
Habit, and Drying Scheme of (R, S)-(±)-Sodium Ibuprofen Dehydrate,” Pharm. Tech., 31 (6),
72-87 (2007).
11 Y. Iitaka, “The Crystal Structure of -Glycine,” Acta Crystallogr. 14 (Part 1),1-10 (1961).
12 S. Hirokawa, “A New Modification of L-Glutamic Acid and its Crystal Structure,” Acta
Crystallogr. 8 (Part 10), 637-641(1955).
13 M. Kitamura, H. Furukawa, and M. Asaeda,“Solvent Effect of Ethanol on Crystallization and Growth Process of L-Histidine Polymorph,” J. Cryst. Growth, 141(1-1), 193-199 (1994).
14 T. Lee, Y. C. Su, H. J. Hou, and H. Y. Hsieh, “Initial Solvent Screening of Carbamazepine,
Cimetidine, and Phenylbutazone: Part 1 of 2,” Pharm. Tech., 33 (6), 54-61 (2009).
15 T. Lee, Y. C. Su, H. J. Hou, and H. Y. Hsieh, “Initial Solvent Screening of Carbamazepine,Cimetidine, and Phenylbutazone: Part 2 of 2,” Pharm. Tech., 33 (5), 62-72 (2009).
16 R.C. Stevens, “High-Throughput Protein Crystallization” Curr. Opin. Struct. Bio., 10 (5),
558-563 (2000).
17 S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-Throughput Crystallization: Polymorphs, Salts Co-Crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56 (3), 275-300 (2004).
18 T. Detoisien, M. Forite, P. Taulelle, J.L. Teston, D. Colson, J. P. Klein, and S. Veesler, “A
Rapid Method for Screening Crystallization Conditions and Phases of an Active
Pharmaceutical Ingredient,” Org. Process Res., 13 (6), 1338–1342 (2009).
19 C. Wibowo, W. Chang, and K. M. Ng, “Design of Integrated Crystallization Systems,”
AIChE. J., 47 (11), 2474-2492 (2001).
20 H. G. Brittain, and D. J. W. Grant, “Effect of Polymorphism” Ch 7 in Polymorphism in Pharmaceutical Solids,” Ed. by H. G. Brttain, (Marcel Dekker, New York, 1999) pp. 279-330.
21 C. Reichardt, Chapter 2: “Solute-Solvent Interactions” Ch 2 in Solvents and Solvent Effects in Organic Chemistry, Ed. by C. Reichardt, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 5-46.
22 T. Lee, and M. S. Lin, “Sublimation Point Depression of Tris(8-hydroxyquinoline) aluminum(III) (Alq3) by Crystal Engineering,” J. Crys. Growth, 7(9), 1803-1810 (2007).
23 C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93 (9), 34-43 (1997).
24 J. W. Mullin, “Crystal Habit Modification.”, Chapter 6.4 in Crystallization, 3rd ed. (Butterworth-Heinemann, Jordan Hill, UK, 1997) pp. 93, 248-250.
25 P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli, “Influence of Crystal Habit on the Compression and Densification Mechanism of Ibuprofen,” J. Crys. Growth, 243 (2), 345-355 (2002).
26 D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals”, AlChE J., 44 (11), 2501-2514 (1998).
27 A. K. Tiwary, “Modification of Crystal Habit and its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7), 699–709 (2001).
28 R. Hilfiker, F. Blatter, and M. V. Raumer, “Relevance of Solid-State Properties for Pharmaceutical Products.” Ch 1 in Polymorphism in Pharmaceutical Industry. R. Hilfiker, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 1-19. 29 F. Rodante, G. Marrosu, and G. Catalani, “Thermal Analysis of Some α-Amino Acids with Similar Structures ” Thermochimica. Acta 194 (3), 197-213 ( 1992 ).
30 J. T. López Navarrete, V. Hernández, and F. J. Ramírez, “IR and Raman Spectra of L-Aspartic Acid and Isotopic Derivatives,” Biopolymers, 34 (8), 1065-1077 ( 1994).
31 M.J. Jamieson, Sharon J. Cooper, A. F. Miller, and S. A. Holt, “Neutron Reflectivity and Rxternal Reflection FTIR Studies of DL-Aspartic Acid Crystallization Beneath Nylon 6 Spread Films,” Langmuir, 20 (9), 3593- 3600 (2004).
32 N. G. Anderson, Practical Process Research & Development (Academic Press, New York, NY, 2000), pp. 81–111.
33 A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140 (2), 195-206 (1996).
34 J. Jacques, A. Collet, and S. H. Wilen, “Solution Properties of Enantiomers and Their Mixtures,”Ch 3 of Enantiomers, Racemates, and Resolutions (John Wiley & Sons, Inc. New York, 1981), pp. 182.
35 Hollenbeck, R. G. “Determination of Differential Heat of Solution in Real Solutions from Variation in Solubility with Temperature,” J. Pharm. Sci., 69 (10), 1241–1242. (1980).
36 Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal Morphology Engineering by"Tailor-Made" Inhibitors; A New Probe to Fine Intermolecular Interactions,” J. Am. Chem. Soc., 107 (11), 3111-3122 (1985).
1 C. F. Chyba, “Origins of Life: A Left-Handed Solar System?” Nature, 389 (6648), 234–235 (1997).
2 L. Addadi, and S. Weiner, “Biomineralization: Crystals, Asymmetry, and Life,” Nature, 411 (6839), 753–755 (2001).
3 D. W. Deamer, R. Dick, W. Thiemann, and M. Shinitzky, “Intrinsic Asymmetries of Amino Acid Enantiomers and Their Peptides: A Possible Role in the Origin of Biochirality,” Chirality, 19 (10), 751–763 (2007).
4 Y. Wang and A. M. Chen, “Enantioenrichment by Crystallization,” Org. Process Res., 12 (2), 282–290 (2008).
5 S. L. Miller, “A Production of Amino Acids Under Possible Primitive Earth Conditions,” Science, 117 (3046), 528–529 (1953).
6 S. W. Fox, “Thermal Synthesis of Amino Acids and the Origin of Life,” Geochim. Cosmochim. Acta, 59 (6), 1213–1214 (1995).
7 S. F. Mason, “Origins of Biomolecular Handedness,” Nature, 311 (5981), 19–23 (1984).
8 D. K. Kondepudi, R. J. Kaufman, and N. Singh, “Chiral Symmetry Breaking in Sodium Chlorate Crystallization,” Science, 250 (4983), 975–976 (1990).
9 Y. Song, W. Chen, and X. Chen, “Ultrasonic Field Induced Chiral Symmtry Breaking of
NaClO3 Crystallization,” Cryst. Growth Des., 8 (5), 1448–1450 (2008).
10 P. Cintas, “Chirality of Living Systems: A Helping Hand from Crystals and Oligopeptides,” Angew. Chem., Int. Ed., 41 (7), 1139–1145 (2002).
11 R. M. Hazen, T. R. Filley, and G. A. Goodfriend, ”Selective Adsorption of L- and D-Amino Acids on Calcite: Implications for Biochemical Homochirality,” Proc. Natl. Acad. Sci. U.S.A., 98 (10), 5487–5490 (2001) .
12 K. Kinbara, Y. Tagawa, and K. Saigo, “Probability of Spontaneously Resolvable Conglomerates for Racemic Acid/Racemic Amine Salts Predicted on the Basis of the Results of Diastereomeric Resolutions,” Tetrahedron: Asymmetry, 12 (21), 2927– 2930 (2001).
13 L. P. Bereczki, E. alovics, P. Bombicz, G. Pokol, E. Fogassy, and Marthi, K. “Optical Resolution of N-Formylphenylalanine Suceeds by Crystal Growth Rate Differences of Diastereomeric Salts,” Tetrahedron: Asymmetry, 18 (2), 260–264 (2007).
14 K. Soai, S. Osanai, K. Kadowaki, S. Yonekubo, T. Shibata, and I. Sato, “D- and L-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound,” J. Am. Chem. Soc., 121 (48), 11235–11236 (1999).
15 M. P. Bernstein, J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola, “Racemic Amino Acids from the Ultraviolet Photolysis of Interstellar Ice Analogues” Nature, 416 (6879), 401– 403 (2002).
16 T. Kawasaki, K. Jo, H. Igarashi, I. Sato, M. Nagano, K. H. Koshima, and K. Soai, “Asymmetric Amplification Using Chiral Cocrystals Formed from Achiral Organic Molecules by Asymmetric Autocatalysis,” Angew. Chem., 117 (18), 2834–2837 (2005).
17 T. Kawasaki, K. Suzuki, Y. Hakoda, and K. Soai, “Achiral Nucleobase Cytosine Acts as an Origin of Homochirality of Biomolecules in Conjunction with Asymmetric Autocatalysis,” Angew. Chem., Int. Ed., 47(3), 496–499 (2008).
18 K. Klussmann, T. Izumi, A. J. P. White, A. Armstrong, and D. G. Blackmond, “Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids,” J. Am. Chem. Soc., 129 (24), 7657–7660 (2007).
19 S. I. Goldberg, “Enantiomeric Enrichment on the Prebiotic Earth,” Origins Life Evol. Biospheres, 37 (1), 55–60 (2007).
20 C. Viedma, J. E. Ortiz, T. Torres, T. Izumi, and D. G. Blackmond, “Evolution of Solid Phase Homochirality for a Proteinogenic Amino Acid” J. Am. Chem. Soc., 130 (46), 15274–15275 (2008).
21 J. Huang, and L. Yu, “Effect of Molecular Chirality on Racemate Stability: R-Amino Acids with Nonpolar R Groups,” J. Am. Chem. Soc., 128 (6), 1873–1878 (2006).
22 D. Musumeci, C.A. Hunter, and J. F. McCabe, “Solvent Effects on Acridine Polymorphism,” Cryst. Growth Des., 10 (4), 1661–1664 (2010).
23 C. Viedma, “Enantiomeric Crystallization from DL-Aspartic and DL-Glutamic Acids: Implications for Biomolecular Chirality in the Origin of Life,” Origins Life Evol. Biospheres, 31 (6), 501–509 (2001).
24 R. V. Eck, “Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive
Amino Acid Sequences,”Science, 152(3720), 363–366 (1966).
25 A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140 (2), 195-206 (1996).
26 J. T. López Navarrete, V. Hernández, and F. J. Ramírez “ IR and Raman Spectra of L-Aspartic Acid and Isotopic Derivatives,” Biopolymers, 34 (8), 1065-1077 ( 1994). 27 M.J. Jamieson, Sharon J. Cooper, A. F. Miller, and S. A. Holt, “Neutron Reflectivity and Rxternal Reflection FTIR Studies of DL-Aspartic Acid Crystallization beneath Nylon 6 Spread Films,” Langmuir, 20 (9), 3593- 3600 (2004).
28 S. Kumar, A. K. Rai, S. B. Rai, D. K. Rai, A. N. Singh, and V. B. Singh, ” Infrared, Raman and Electronic Spectra of Alanine: A Comparison with ab Initio Calculation,” J. Mol. Struct., 791(1-3), 23–29 (2006).
29 T. Threlfall, “Structural and Thermodynamic Explanations of Ostwald's Rule,” Org. Proc. Res. Dev., 7 (6), 1017–1027 (2003).
30 W. A. Bonner, “The Origin and Amplication of Biomolecular Chirality,” Origins Life Evol. Biospheres., 21 (12), 59–111, (1991).
31 J. T. Huang, C. Stringfellow, and L. Yu, “Glycine Exists Mainly as Monomers, Not Dimers, in Supersaturated Aqueous Solutions: Implications for Understanding Its Crystallization and Polymorphism,” J. Am. Chem. Soc., 130 (42), 13973–13980 (2008).
32 T. Lee, Y. H. Chen, and Y. W. Wang, “Effects of Homochiral Molecules of (S)-(+)-Ibuprofen and (S)-(-)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetics of Racemic (R,S)-(±)- Sodium Ibuprofen Dihydrate,” Cryst. Growth Des., 8 (2), 415–426 (2008).
33 A. H. Janssen, H. Talsma, M. J. Steenbergen, and K. P. Jong, “Homogeneous Nucleation of Water in Mesoporous Zeolite Cavities,” Langmuir, 20 (1), 41–45 (2004).
34 C. R. Keener, G. D. Fullerton, I. L. Cameron, and J. Xiong, “Solution Nonideality Related to Solute Molecular Characteristics of Amino Acids,” Biophys. J., 68 (1), 291–302 (1995).
35 S. H. Druot, and G. Coquerel, “How Far Can an Unstable Racemic Compound Affect the Performance of Preferential Crystallization? Example with (R)- and (S)-R-methylbenzylamine chloroacetate,” J. Chem. Soc., Perkin Trans., 2 (10), 2211–2220 (1998).
36 M. P. Elsner, G. Ziomek, and A. S. Morgenstern, “Efficient Separation of Enantiomers by Preferential Crystallization in Two Coupled Vessels,” AICHE J., 55 (3), 640–649 (2009).
37 J. Jacques, A. Collet, and S. H. Wilen, “Solution Properties of Enantiomers and Their Mixtures,”Ch 3 of Enantiomers, Racemates, and Resolutions (John Wiley & Sons, Inc. New York, 1981), pp. 201-207.
38 J. R. Cronin, S. Pizzarello, and D. P. Cruikshank, “Organic Matter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets. Meteorites and the Early Solar System, by J. F. Kerridge, and M. S. Matthews, Eds. (The University of Arizona Press, Tucson, 1998) pp. 819-857.
39 C. J. Welch, “Formation of Highly Enantioenriched Microenvironments by Stochastic Sorting of Conglomerate Crystals: A Plausible Mechanism for Generation of Enantioenrichment on the Prebiotic Earth,” Chirality, 13 (8), 425–427 (2001).
40 D. Winn, M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown
Organic Crystals,” AICHE J., 44 (11), 2501-2514 (1998).
41 B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Hornedo, “Generalprinciples of Pharmaceutical Solid Polymorphism: A Supramolecular Perspective,” Adv. Drug. Del. Rev., 56 (3), 241-274 (2004).
42 R. Boistelle, and J. P. Astier, “Crystallizatiom Mechanisms Solution,” J. Crys. Grow. 90
(1-3), 14-30 (1988).
43 D. K. Kondepudi, and K. E. Crook, “Theory of Conglomerate Crystallization in the
Presence of Chiral Impurities,” Crys. Growth Des., 5 (6), 2173-2179 (2005).
44 M. Kitamura, “Controlling Factor of Polymorphism in Crystallization Process,” J. Cryst. Growth, 237–239 (3), 2205–2214 (2002).
45 A. Lancia, D. Musmarra, and M. Prisciandaro, “Measure Induction Period for Calcium
Sulfate Dihydrate Precipition,” AICHE J., 45 (2), 390-397 (1999).
46 B. Biscans, and C. Laguerie, “Determination of Induction Time of Lysozyme Crystals by
Laser Diffraction,” J. Phys. D: Appl. Phys., 26 (8B), 118-122 (1993).
47 H. Hu, T. Hale, X. Yang, and L. J. Wilson, “A Spectrophotometer-Based Method for
Crystallization Induction Time Period Measurement,” J. Cryst. Grow., 232 (1), 86-92 (2001).
48 B. K. Paul, and M. S. Joshi, “The Effect of Supersaturation on the Induction Period of
Potassium Dihydrogen Phosphate Crystals Grown from Aqueous Solution,” J. Phys. D: Appl.
Phys., 9 (8), 1253-1256 (1976).
49 G. Arunmozhi, E. D. M. Gomes, and S. Gansamorrthy, “Growth Kinetics of Zinc(tris)
Thiourea Sulphate (ZTS) Crystals,” Cryst. Res. Technol., 39(5): 408-413 (2004).
50 R. C. Kelly, and N. Rodrgíuez-Hornedo, “Solvent Effects on the Crystallization and
Preferential Nucleation of Carbamazepine Anhydrous Polymorphs: A Molecular Recognition
Perspective,” Org. Process Res. Dev., 13 (6), 1291-1300 (2009).
51 J. Anwar, P. K. Boateng, R. Tamaki, and S. Odedra, “ Mode of Action and Design Rules for Additives That Modulate Crystal Nucleation,” Angew. Chem. Int. Ed. Engl., 48 (9) 1596-1600 (2009).
52 R. Siddheswaran, R. Sankar, M. Rathnakumari, R. Jayavel, P. Murugakoothan, and P.
Sureshkemar, “Nucleation, Growth and Characterization Studies of a Nonlinear Optical Crystal-tris Allylthiourea Cadmium Chloride (ATCC),” Laser Phys. Lett., 3 (12): 588-593
(2006).
53 R. A. Granberg, and Ǻ.C. Rasmuson, “Crystal Growth Rates of Paracetamol in Mixtures of
Water + Acetone +Toluene,” AICHE J., 51 (9), 2441-2456 (2005).
54 H. E. L. Madsen, “Crystal Growth Kinetics of Copper Phosphate from Acid Solution at 37
˚C,” J. Cryst. Grow., 275 (1), e191-e196 (2005).
55 T. Kanagasekaran, M. Gunasekaran, P. Srinivasan, D. Jayaraman, R. Gopalakrishnan, and
P. Ramasamy, “Studies on Growth, Induction Period, Interfacial Energy and Metastable
Zonewidth of M-nitroaniline,” Cryst. Res. Technol., 40 (12), 1128-1133 (2005).
56 W. Wu, and G. H. Nancollas, “The Relationship between Surface Free-energy and Kinetics
in the Mineralization and Demineralization of Dental Hard Tissue,” Adv. Dent. Res., 11 (4),
566-575 (1997).
57 J.W. Mullin, “Crystallization, 3rd” Butterworth-Heinemann, Oxford, Great Britain, pp.
202-263 (1993).
58 P. Pantaraks, and A. E. Flood, “Effect of Growth Rate History on Current Crystal Growth:
a Second Look at Surface Effects on Crystal Growth Rates,” Cryst. Growth Des., 5 (1), 365-371 (2005).
59 S. Schweizer, and A. Taubert, “Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution,” Macromol. Biosci., 7 (9-10), 1085-1099 (2007).
60 H. Lorenz, D. Polenske, and S. Morgenstern, “Application of Preferential Crystallization to Resolve Racemic Compounds in a Hybrid Process,” Chirality, 18 (10), 828–840 (2006).
61 L. Addadi, S. Weinstein, E. Gati, I. Weissbuch, and M. Lahav, “Resolution of Conglomerates with the Assistance of Tailor-made Impurities. Generality and Mechanistic Aspects of the Rule of Reversal, A New Method for assignment of Absolute Configuration,” J. Am. Chem. Soc., 104 (17), 4610–4617 (1982).
|