博碩士論文 973202059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.224.55.193
姓名 李文心(Wen-hsin Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 二維矩形柱體尾流之數值模擬
(Numerical Simulation of Two-dimensional Rectangular Cylinders)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用計算流體動力學數值模式,計算靜止及振動二維矩形柱體周圍流場及柱體所受的阻力與升力。紊流流場的計算採用大渦紊流模式,計算結果並與前人的實驗結果驗證、比對。探討在均勻流況中,長寬比L/D = 1, 3, 5, 10矩形柱體,側牆上的再接觸現象與其所受之升力、阻力。結果顯示:長寬比L/D 3才出現再接觸現象,在接近接觸點位置區域會產生一個最大壓力擾動值,往下游逐漸達到一個穩定值,而時間平均壓力係數會隨著柱體長寬比的增加而減小。另外,本研究亦針對L/D = 5的柱體探討邊牆效應對於渦流逸散和再接觸現象的影響,隨著間隙比越小,柱體上下流場不對稱現象越明顯。且因為柱體和邊牆的間隙縮小,通過的流速增大,導致柱體下方壓力減小,故平均升力係數皆增加。接著,研究週期性振動的方柱體(L/D = 1)和矩形柱體(L/D = 10)的阻力和升力係數。結果顯示:當方柱體水平振動,且振動頻率等於渦流逸散頻率時,平均阻力係數和擾動升力係數有最大值;而垂直上下之矩形柱體,振動頻率等於渦流逸散頻率振動,隨著振幅增大,其升力係數也隨之增大。
摘要(英) The unsteady forces and wake flows of two-dimensional rectangular cylinders are numerically simulated by using the Computational Fluid Dynamics (CFD) model. The turbulent flow was computed by the Large Eddy Simulation (LES) model, and the Partial Cell Treatment (PCT) was used to handle the moving solid. The aerodynamic forces, and wake flow of stationary cylinders with different aspect ratios L/D = 1, 3, 5, 10 (L is the length of the rectangular cylinder and D is the height of the cylinder) were investigated in details. The results indicated that the distribution of time-average pressure coefficients on the cylinder wall is related to the reattachment phenomenon.
This study also investigated the wall effect on the flow field around a stationary rectangular cylinder L/D = 5. The rectangular cylinder was placed close to a solid wall with different gap ratio. It is found that as the gap ratio S/D (S is the distance from the wall to the lower face of cylinder) decreased, the mean pressure coefficient on upper and lower walls became asymmetric, and the time-averaged lift coefficient increased as the gap ratio decreased.
Finally, the wake flows of oscillating cylinders were simulated by varying oscillation frequency and amplitude, the resulting drag and lift coefficient of the cylinders are analyzed systematically. The numerical results reveal that for square cylinder (L/D = 1), the time-averaged drag and lift coefficient reach maximum value for in-line oscillation when the forced oscillation frequency equal to the vortex shedding frequency (lock-in region). Also, the transversely oscillated cylinder has the maximum drag coefficient in the lock-in region. The rms lift coefficient of rectangular cylinder of aspect ratio L/D = 10 increased as the oscillation amplitude increased.
關鍵字(中) ★ 阻力和升力係數
★ 大渦紊流模式
★ 邊牆效應
★ 渦流逸散
★ 計算流體動力學
關鍵字(英) ★ Oscillating cylinder
★ Wake flow
★ Drag and lift coefficient
★ Wall effect
★ Large Eddy Simulation
★ Vortex shedding
論文目次 Contents
Abstract I
Contents III
Figure Captions IV
Table Captions VII
1. Introduction 1
2. Numerical Method 7
3. Model Verification 16
4. Results and Discussion 19
4.1 Stationary rectangular cylinder 19
4.2 Stationary cylinders of different length 21
4.3 Stationary cylinder with wall effect 22
4.4 Oscillating cylinder 23
5. Conclusions 24
Reference 26
Figures 29
Tables 57
Appendix 62
參考文獻 References
[1] Gerrard J.H. The wakes of cylindrical bluff bodies at low Reynolds number. Philos. Trans. R. Soc. Lond. A. 1978; 288: 351-382.
[2] Oertel H. Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 1990; 22: 539.
[3] Okajima A. Strouhal numbers of rectangular cylinders. J. Fluid Mech. 1982; 123: 379-398.
[4] Durao D.F.G., Heitor M.V. Pereira J.C.F. Measurements of turbulent and periodic flows around a square cross-section cylinder. Experiments in Fluids 6. 1988; 298-304.
[5] Lyn D.A. Einav S. Rodi W. and Park J.-H. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 1995; 304: 285-319.
[6] 張瑞禎 (1998) 邊界層流中二維方柱尾流之風洞實驗,國立中央大學土木工程學系碩士論文
[7] 陳玉佳 (2000) 以大渦紊流模式模擬不同流況對二維方柱尾流之影響,國立中央大學土木工程學系碩士論文
[8] Morison J.R. O’Brien M.P. Schaaf S.A. Johnson J.W. The force exerted by surface waves on piles. Petroleum Transactions, AIME 1950; 189: 149-157.
[9] Bearman P.W. and Obasaju E.D. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders. J. Fluid Mech. 1982; 119: 297-321.
[10] Bearman P.W. Graham J.M.R. Obasaju E.D. Drossopoulos G.M. The influence of corner radius on the forces experienced by cylindrical bluff bodies in oscillatory flow. Applied Ocean Research 1984; 6: 83-89.
[11] Okajima A. Kitajima K. Ueno H. Numerical study on wake patterns and aerodynamic forces of an oscillating cylinder with a circular and rectangular cross-section. J. of Wind Engineering and Industrial Aerodynamics 1993; 50: 39-48.
[12] Okajima A. Matsumoto T. Kimura S. Force measurements and flow visualization of circular and square cylinders in oscillatory flow, Proc. JSME B 1997; 63 (615): 58–66.
[13] Zheng W. and Dalton C. Numerical prediction of force on rectangular cylinders in oscillating viscous flow. J. of Fluids and Structures 1999; 13: 225-249.
[14] Nomura T. Suzuki Y. Uemura M. Kobayashi N. Aerodynamic forces on a square cylinder in oscillating flow with mean velocity. J. of Wind Engineering and Industrial Aerodynamics 2003; 91: 199-208.
[15] Dutta S. Panigrahi PK. Muralidhar K. Sensitivity of a square cylinder wake to forced oscillations. J. of Fluids Engineering 2007; 129: 852-870.
[16] Chern M.-J. Lu Y.-J. Chang S.-C. Cheng I.C. Interaction of oscillatory flows with a square cylinder. Journal of Mechanics 2007; 23 (4): 245-251.
[17] Chen C.-C. Fang F.-M. Li Y.-C. Huang L.-M. Chung C.-Y. Fluid forces on a square cylinder in oscillating flows with non-zero-mean velocities. Int. J. Numer. Meth. Fluids 2009; 60: 79-93.
[18] Yang S.J. Cheng T.R. Fu W.S. Numerical simulation of flow structures around an oscillating rectangular cylinder in a channel flow, Comput. Mech. 2005; 35: 342-351.
[19] Bruno L. Fransos D. Coste N. Bosco A. 3D flow around a rectangular cylinder: A computational study. J. Wind Engineering and Industrial Aerodynamics 2010; 98: 263-276.
[20] Malavasi S. and Trabucchi N. Numerical investigation of the flow around a rectangular cylinder near a solid wall. Conference Proceeding of Bluff Bodies Aerodynamics & Applications, Milano, Italy 2008; 20-24.
[21] Deardroff J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 1970; 41 (2): 435-480.
[22] Yoshizawa A. Eddy-viscosity-type subgrid-scale model with a variable Smagorinsky coefficient and its relationship with the one-equation model in large eddy simulation. Physics of Fluids A: Fluid Dynamics 1991; 3 (8): 2007-2009.
[23] Cabot W. and Moin P. Approximate wall boundary conditions in the Large-eddy simulation of high Reynolds number flow. Flow Turbulence Combustion 2000; 63: 269-291.
[24] Chorin A.J. Numerical solution of the Navier-Stokes equations. Math. Comp. 1968; 22: 745-762.
[25] Chorin A.J. On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp. 1969; 23: 341-353.
[26] DeLong M. Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES. Technical Report LA-UR-97-4181, Los Alamos National Laboratory, Los Alamos, New Mexico 1997.
[27] Chuang M.-H. (2009) Developing a Two-way Coupled of Moving Solid Method for Solving Landslide Generated Tsunamis. M.S. Thesis, Graduate Institute of Hydrological and Oceanic Science, National Central University.
[28] Wu T.-R. (2004) A numerical Study of Three-dimensional Breaking Waves and Turbulence Effects. Ph.D. Dissertation, Cornell University.
[29] Hoerner S.F. (1965) Fluid Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift. Hoerner Fluid Dynamics, New Jersey.
[30] Shimada K. and Ishihara T. Application of a modified k– model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders. J. of Fluid and Structures 2002; 16 (4): 465–485.
[31] Yu D. and Kareem A. Parametric study of flow around rectangular prisms using LES. J. of Wind Engineering and Industrial Aerodynamics 1998; 77&78: 653–662.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2010-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明