博碩士論文 973204067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.191.13.255
姓名 許群侑(Chun-Yu Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 MFI奈米沸石粒子的形貌控制
(Morphology control of MFI zeolite)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 實驗室過去已經發展出一套奈米silicalite-1的合成方法,可快速製作出尺寸50~60 nm粒子、且均一分佈的奈米沸石。
本研究是以過去的方法為基礎並改變不同反應條件,製作出兩種不同形貌的沸石且尺寸與過去相近。為了探討不同結構的反應機制,將不同條件下製作出的產物進行分析。主要分析部份為離心上下層產率、表面形態(SEM、TEM)、表面官能基(FTIR)、結晶性及晶體結構(XRD)、比表面積孔徑分佈(ASAP)、粒徑分佈(DLS)等。
鍛燒後,兩種不同形貌沸石的再分散性也有明顯差異。在鹼性溶液下,單晶粒子較複合結晶粒子有分散性(PDI<0.1)。並且粒子經過MPS表面改質可分散至MEK,未來將有機會混入高分子,製作出低折率材料。
利用稀釋前驅濃膠到不同醇類中,合成出不同形貌的粒子。另外,改變不同低溫反應時間,也可得到不同尺寸的沸石粒子。
摘要(英) A rapid synthesis procedure for silicalite-1 nanocrystals was developed in our laboratory in the past. The crystal sizes about 50 nm are uniform.
In the study, the previous synthesis procedure were modified to produce silicalite-1 nanocrystals with similar size but different morphologies. To study the growth mechanisms of nanocrystals in different morphologies, the products were analyzed with FTIR, SEM, TEM, ASAP and centrifuged yield .
After calcination, the dispersion is different for well-shaped and agglomerated nanocrystals. The well-shaped nanocrystals were dispersed much better in alkaline solution after calcination than agglomerated nanocrystals and the dispersed particles were uniform(PDI<0.1). The well-shaped nanocrystals dispersed in MEK by surface modification with MPS. It might be applied in hybrid materials.
The particles in different morphologies can be synthesized by diluting precussor in alcohols. In addition, the different size particles were obtained by different aging time.
關鍵字(中) ★ MFI奈米沸石粒子的形貌控制 關鍵字(英) ★ Morpholoy control of MFI zeolite
論文目次 目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 序論 1
1-1 沸石簡介 1
1-2 MFI沸石 2
第二章 文獻回顧 3
2-1 沸石前驅液的研究 3
2-2 奈米級MFI沸石合成 5
2-3 微米級沸石合成 5
2-4 利用不同合成方式控制沸石形貌 6
2-5 研究方向 7
第三章 沸石前驅物製備與儀器樣品製備方法 8
3-1 實驗藥品 8
3-2 沸石前驅物及兩段式加熱合成奈米MFI沸石 9
3-2-1 備置澄清溶液 9
3-2-2 離心清洗 12
3-2-3 利用醇類將粒子表面進行改質 13
3-2-4 高溫鍛燒及重新獲得分散奈米沸石 14
3-3 高水比下備置次微米粒子及微米沸石 14
3-3-1 透明前驅液製備方式 14
3-3-2 離心清洗與製備親水矽晶片 15
3-3-3 利用塗抹方式將乾燥粉體塗抹成單層排列 15
3-4 Silicalite-1的鑑定與分析 16
3-4-1 動態雷射粒徑儀(DLS)分析 16
3-4-2 傅立葉紅外線光譜儀(FTIR)分析 16
3-4-3 粉末式X光繞射(PXRD)分析 17
3-4-4 掃描式電子顯微鏡(SEM) 17
3-4-5 熱重損失(TGA)分析 17
3-4-6 穿透式電子顯微鏡(TEM)分析 17
3-4-7 氮氣恆溫吸附(ASAP)分析 18
第四章 結果與討論 19
4-1 利用濃縮老化及二段式加熱製備奈米沸石 19
4-2 沸石聚集結晶機制 20
4-2-1 不同老化時間對粒子形貌的影響 22
4-2-2 不同形貌對氮氣吸附的影響 26
4-2-3 離心上下層的分析與鑑定 29
4-2-3-1 離心上下層的分析(FTIR及XRD) 29
4-2-3-2 老化時間對結晶量的影響 33
4-2-4 影響沸石形貌的成長機制 35
4-3 有機相合成沸石 37
4-3-1 有機溶劑對沸石聚集影響 37
4-3-2 老化時間對粒子大小之差異性 38
4-3-3 沸石鑑定與分析(FTIR、XRD) 41
4-4 利用不同醇類進行表面改質 43
4-5 鍛燒後沸石的再分散性 44
4-6 高水比下合成微米沸石 47
4-6-1 有無濃縮對粒子大小差異(SEM) 47
4-6-2 利用微米級沸石製備b軸朝上沸石膜(XRD) 48
第五章 結論與建議 50
參考文獻 Reference List
1. Fong, Y. Y.; Bhatia, S. Pure Silica Zeolite Beta Membrane: A Potential Low Dielectric Constant Material For Microprocessor Application. Journal of Applied Sciences 2007, 7 (15), 2040-2045.
2. Wang, Z.; Wang, H.; Mitra, A.; Huang, L.; Yan, Y. Pure-silica zeolite low-k dielectric thin films. Advanced Materials 2001, 13 (10), 746-749.
3. Chen, D. Anti-reflection(AR) coatings made by sol-gel processes: A review. SOL ENERG MATER SOL CELLS 2001, 68 (3), 313-336.
4. Nair, S.; Tsapatsis, M. Infrared reflectance measurements of zeolite film thickness, refractive index and other characteristics. Microporous and Mesoporous Materials 2003, 58 (2), 81-89.
5. Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J. R.; Santamaria, J. Use of zeolite films to improve the selectivity of reactive gas sensors. Catalysis today 2003, 82 (1-4), 179-185.
6. Tsay, C. S.; Chiang, A. S. T. Supported zeolite membrane by vapor-phase regrowth. Aiche Journal 2000, 46 (3), 616-625.
7. Schoeman, B. J. Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Microporous and Mesoporous Materials 1998, 22 (1-3), 9-22.
8. Hsu, C. Y.; Chiang, A. S. T.; Selvin, R.; Thompson, R. W. Rapid synthesis of MFI zeolite nanocrystals. J. Phys. Chem. B 2005, 109 (40), 18804-18814.
9. Rimer, J. D.; Lobo, R. F.; Vlachos, D. G. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations. Langmuir: the ACS journal of surfaces and colloids 2005, 21 (19), 8960.
10. Rimer, J. D.; Trofymluk, O.; Navrotsky, A.; Lobo, R. F.; Vlachos, D. G. Kinetic and thermodynamic studies of silica nanoparticle dissolution. Chem. Mater 2007, 19 (17), 4189-4197.
11. Provis, J. L.; Gehman, J. D.; White, C. E.; Vlachos, D. G. Modeling silica nanoparticle dissolution in TPAOH-TEOS-H2O solutions. Journal of Physical Chemistry C 2008, 112 (38), 14769-14775.
12. Yang, S.; Navrotsky, A.; Wesolowski, D. J.; Pople, J. A. Study on synthesis of TPA-silicalite-1 from initially clear solutions of various base concentrations by in situ calorimetry, potentiometry, and SAXS. Chem. Mater 2004, 16 (2), 210-219.
13. Liang, D.; Follens, L. R. A.; Aerts, A.; Martens, J. A.; Van Tendeloo, G.; Kirschhock, C. E. A. TEM observation of aggregation steps in room-temperature silicalite-1 zeolite formation. 2007.
14. Lesthaeghe, D.; Vansteenkiste, P.; Verstraelen, T.; Ghysels, A.; Kirschhock, C. E. A.; Martens, J. A.; Van Speybroeck, V.; Waroquier, M. MFI fingerprint: How pentasil-induced IR bands shift during zeolite nanogrowth. Journal of Physical Chemistry C 2008, 112 (25), 9186-9191.
15. Kragten, D. D.; Fedeyko, J. M.; Sawant, K. R.; Rimer, J. D.; Vlachos, D. G.; Lobo, R. F.; Tsapatsis, M. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. Journal of Physical Chemistry B 2003, 107 (37), 10006-10016.
16. Kumar, S.; Davis, T. M.; Ramanan, H.; Penn, R. L.; Tsapatsis, M. Aggregative growth of silicalite-1. Journal of Physical Chemistry B 2007, 111 (13), 3398-3403.
17. Aerts, A.; Haouas, M.; Caremans, T. P.; Follens, L. R. A.; van Erp, T. S.; Taulelle, F.; Vermant, J.; Martens, J. A.; Kirschhock, C. E. A. Investigation of the Mechanism of Colloidal Silicalite-1 Crystallization by Using DLS, SAXS, and 29Si NMR Spectroscopy. Chemistry-A European Journal 2010, 9999 (9999).
18. Persson, A. E.; Schoeman, B. J.; Sterte, J.; Ottesstedt, J. E. The Synthesis of Discrete Colloidal Particles of Tpa-Silicalite-1. Zeolites 1994, 14 (7), 557-567.
19. Tsay, C. S.; Chiang, A. S. T. The synthesis of colloidal zeolite TPA-silicalite-1. Microporous and mesoporous Materials 1998, 26 (1-3), 89-99.
20. Mintova, S.; Valtchev, V. Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study. Microporous and Mesoporous Materials 2002, 55 (2), 171-179.
21. Cundy, C. S.; Forrest, J. O.; Plaisted, R. J. Some observations on the preparation and properties of colloidal silicalites. Part 1: synthesis of colloidal silicalite-1 and titanosilicalite-1 (TS-1). Microporous and Mesoporous Materials 2003, 66 (2-3), 143-156.
22. Song, W.; Justice, R. E.; Jones, C. A.; Grassian, V. H.; Larsen, S. C. Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes. Langmuir 2004, 20 (11), 4696-4702.
23. Wee, L. H.; Wang, Z.; Mihailova, B.; Doyle, A. M. Organic functionalization of Silicalite-1 nanocrystals by ultrasonic treatment in methanol. Microporous and Mesoporous Materials 2008, 116 (1-3), 59-62.
24. Serrano, D. P.; Aguado, J.; Rodriguez, J. M.; Peral, A. Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds. Chem. Mater 2006, 18 (10), 2462-2464.
25. Vuong, G. T.; Do, T. O. Synthesis of silylated nanozeolites in the presence of organic phase: Two-phase and single-phase methods. Microporous and Mesoporous Materials 2009, 120 (3), 310-316.
26. Vuong, G. T.; Do, T. O. A new route for the synthesis of uniform nanozeolites with hydrophobic external surface in organic solvent medium. Journal of the American Chemical Society 2007, 129 (13), 3810-3811.
27. Lew, C. M.; Li, Z.; Zones, S. I.; Sun, M.; Yan, Y. Control of size and yield of pure-silica-zeolite MFI nanocrystals by addition of methylene blue to the synthesis solution. Microporous and Mesoporous Materials 2007, 105 (1-2), 10-14.
28. Liu, Y.; Li, Y. S.; Yang, W. Fabrication of highly b-oriented MFI monolayers on various substrates. Chemical Communications 2009, (12), 1520-1522.
29. Zhou, M.; Liu, X. F.; Zhang, B. Q.; Zhu, H. M. Assembly of Oriented Zeolite Monolayers and Thin Films on Polymeric Surfaces via Hydrogen Bonding. Langmuir 2008, 24 (20), 11942-11946.
30. Lee, J. S.; Kim, J. H.; Lee, Y. J.; Jeong, N. C.; Yoon, K. B. Manual assembly of microcrystal monolayers on substrates. Angewandte Chemie-International Edition 2007, 46 (17), 3087-3090.
31. Kida, T.; Kojima, K.; Ohnishi, H.; Guan, G.; Yoshida, A. Synthesis of large silicalite-1 single crystals from two different silica sources. Ceramics International 2004, 30 (5), 727-732.
32. Gao, F. F.; Zhu, G. S.; Li, X. T.; Li, B. S.; Terasaki, O.; Qiu, S. L. Synthesis of a high-quality host material: Zeolite MFI giant single crystal from monocrystalline silicon slice. Journal of Physical Chemistry B 2001, 105 (51), 12704-12708.
33. Mateo, E.; Paniagua, A.; Guell, C.; Coronas, J.; Santamaria, J. Study on template removal from silicalite-1 giant crystals. Materials Research Bulletin 2009, 44 (6), 1280-1287.
34. Larlus, O.; Valtchev, V. P. Control of the morphology of all-silica BEA-type zeolite synthesized in basic media. Chem. Mater 2005, 17 (4), 881-886.
35. Lin, J. C.; Yates, M. Z. Altering the crystal morphology of silicalite-1 through microemulsion-based synthesis. Langmuir 2005, 21 (6), 2117-2120.
36. Chen, X.; Yan, W.; Cao, X.; Xu, R. Quantitative correlation between morphology of silicalite-1 crystals and dielectric constants of solvents. Microporous and Mesoporous Materials 2009.
37. Chen, X.; Yan, W.; Shen, W.; Yu, J.; Cao, X.; Xu, R. Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials 2007, 104 (1), 296.
38. Bonilla, G.; Diaz, I.; Tsapatsis, M.; Jeong, H. K.; Lee, Y.; Vlachos, D. G. Zeolite (MFI) crystal morphology control using organic structure-directing agents. Chemistry of Materials 2004, 16 (26), 5697-5705.
39. Axnanda, S.; Shantz, D. F. Cationic microemulsion-mediated synthesis of silicalite-1. Microporous and Mesoporous Materials 2005, 84 (1-3), 236-246.
40. Lee, S.; Shantz, D. F. High temperature synthesis of silicalite-1 in cationic microemulsions. Microporous and Mesoporous Materials 2005, 86 (1-3), 268-276.
41. 周怡全 中央大學碩士論文. 2009.
42. 王麗菁 中央大學碩士論文. 2006.
43. 徐政業 中央大學碩士論文. 2005.
44. Fedeyko, J. M.; Vlachos, D. G.; Lobo, R. F. Formation and structure of self-assembled silica nanoparticles in basic solutions of organic and inorganic cations. Langmuir 2005, 21 (11), 5197-5206.
45. Zhang, B. Q.; Zhou, M.; Liu, X. F. Monolayer assembly of oriented zeolite crystals on alpha-Al2O3 supported polymer thin films. Advanced Materials 2008, 20 (11), 2183-+.
46. Li, Q.; Creaser, D.; Sterte, J. The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis. Microporous and Mesoporous Materials 1999, 31 (1-2), 141-150.
47. Phiriyawirut, P.; Magaraphan, R.; Jamieson, A. M.; Wongkasemjit, S. Morphology study of MFI zeolite synthesized directly from silatrane and alumatrane via the sol-gel process and microwave heating. Microporous and Mesoporous Materials 2003, 64 (1-3), 83-93.
48. Corkery, R. W.; Ninham, B. W. Low-temperature synthesis and characterization of a stable colloidal TPA-silicalite-1 suspension. Zeolites 2005, 18 (5-6), 379-386.
49. Davis, T. M.; Drews, T. O.; Ramanan, H.; He, C.; Dong, J. S.; Schnablegger, H.; Katsoulakis, M. A.; Kokkoli, E.; McCormick, A. V.; Penn, R. L.; Tsapatsis, M. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Materials 2006, 5 (5), 400-408.
50. Kirschhock, C. E. A.; Ravishankar, R.; Verspeurt, F.; Grobet, P. J.; Jacobs, P. A.; Martens, J. A. Identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system. Journal of Physical Chemistry B 1999, 103 (24), 4965-4971.
51. Soydas, B.; Culfaz, A.; Kalipcilar, H. Effect of Soda Concentration on the Morphology of MFI-Type Zeolite Membranes. Chemical Engineering Communications 2009, 196 (1-2), 182-193.
52. Lee, S. J.; Shantz, D. F. Zeolite growth in nonionic microemulsions: Synthesis of hierarchically structured zeolite particles. Chemistry of Materials 2005, 17 (2), 409-417.
53. Drews, T. O.; Tsapatsis, M. Progress in manipulating zeolite morphology and related applications. Current Opinion in Colloid & Interface Science 2005, 10 (5-6), 233-238.
54. Smaihi, M.; Gavilan, E.; Durand, J. O.; Valtchev, V. P. Colloidal functionalized calcined zeolite nanocrystals. Journal of Materials Chemistry 2004, 14 (8), 1347-1351.
55. Wang, H. T.; Wang, Z. B.; Yan, Y. S. Colloidal suspensions of template-removed zeolite nanocrystals. Chemical Communications 2000, (23), 2333-2334.
56. Lee, I.; Buday, J. L.; Jeong, H. K. mu-Tiles and mortar approach: A simple technique for the facile fabrication of continuous b-oriented MFI silicalite-1 thin films. Microporous and Mesoporous Materials 2009, 122 (1-3), 288-293.
指導教授 蔣孝澈(A.S.T. Chiang) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明