博碩士論文 973204006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.149.235.171
姓名 徐士平(Shih-Ping Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
(Controls over Microdomain in Diblock Copolymer Thin Films by Polar/Nonpolar Cosolvent Annealing)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之重點在於製備大範圍有序垂直排向之六角圓柱陣列,所以從選擇溶解雙團鏈共聚物聚苯乙烯聚氧乙烯(PS-b-PEO)的溶劑、塗佈成膜、並以極性/非極性混合溶劑蒸氣在不同混合比例下退火處理,希望從這三道程序當中分別找出最適當的條件。首先以四種不同揮發速率的溶劑溶解PS-b-PEO,再以滴鍍(drop casting)的方式成膜,結果顯示溶劑揮發速率快慢會影響圓柱結構排列的有序性,其中以揮發速率最慢的甲苯在高分子濃度為2wt%時形成的垂直圓柱陣列最好,但缺點是薄膜表面相當不平整以及達到有序陣列的時間較長。改以旋鍍改善薄膜平整度,但其高轉速反而加速溶劑揮發的速率,使的垂直圓柱陣列相當無序。因此我們利用浸鍍可大幅改善這些問題,並進一步以不同的拖曳速率調控圓柱結構的排向,在低速拖曳時溶劑揮發主導圓柱排向為垂直式,而在高速拖曳時慣性力主導圓柱排向為水平式。最後,綜合上述結果我們選用甲苯當作溶劑配製2wt%的高分子溶劑以1mm/s的拖曳速率浸鍍成膜後,利用非極性溶劑甲苯混合極性溶劑(水或醇類溶劑)以不同的混合比例共溶劑蒸氣下溶劑退火處理,我們成功地在甲苯/乙醇混合比例為95:5製備出大範圍有序垂直的六角圓柱陣列,並在甲苯/乙醇混合比例為60:40發現圓柱結構會轉變成Fddd,以及甲苯/正丙醇混合比例為85:15發現圓柱結構和雙連續相(Double Gyroid)共存,証實PS-b-PEO以適當的比例混合選擇性溶劑(selective solvent)退火能夠誘導相轉變的發生。
摘要(英) I have systematically studied the morphology and orientation of microstructures in thin films of an asymmetric poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer after the thin films were subjected to solvent annealing in various vapors of nonpolar/polar cosolvents. In the first part of the thesis, I dissolved PS-b-PEO into the four solvents: toluene, benzene, tetrahydrofuran and chloroform. Each of the four solvents has a different evaporation rate. Therefore, I investigated the effect of the evaporation rate on the microphase-separated microdomains and their spatial ordering. Toluene has the slowest solvent rate. As a result, the evaporation of toluene led to hexagonal arrays of cylinders with a perpendicular orientation. On the other hand, I prepared thin films by drop casting and spin coating. It was found that drop casting couldn’t yield uniform thin films due to the coffee ring effect and that spin coating couldn’t generate microstructures with long-range ordering. Therefore, I used another coating approach, dip-coating, to prepare thin films instead. The low withdrawing rate (0.5 mm/s) induced to cylinders with a perpendicular orientation, and the high withdrawing rate (1.25 mm/s) induced to cylinders with a parallel orientation. In the second part of the thesis, I studied the morphologies in thin films after those films were subjected to solvent annealing in various solvent vapors (in mixed vapors of nonpolar/polar cosolvents). The various polar solvents in the mixed vapors were water, methanol, ethanol, 1-propanol, 1-butanol and 1-hexanol whereas the nonpolar solvent was toluene. PS-b-PEO thin films were first deposited on SiOx/Si by dip-coating at 1 mm/s from a 2 wt% toluene solution. I successfully fabricated the long range hexagonal arrays of perpendicularly-oriented cylinders upon solvent annealing thin films in the toluene/ethanol vapor of the volumetric fraction of 95/5. In addition, controling the mixed ratio of nonpolar/polar cosolvents led to complicated microphase-separated morphologies, such as the Fddd structure in the thin film with exposure to the toluene/ethanol vapor of 60/40 and the coexistence of double-gyroids and cylinders in the thin film with solvent annealing in the toluene /1-propanol vapor of the fraction of 85/15.
關鍵字(中) ★ 相轉變
★ 溶解參數
★ 浸鍍成膜
關鍵字(英) ★ dip coating
★ solubility parameter
★ phase transition
論文目次 目錄
中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
第一章 簡介 1
1-1高分子團鏈共聚物自組裝行為 1
1-2雙團鏈共聚物薄膜微觀相分離形態 3
1-2-1薄膜厚度 3
1-2-2薄膜界面能 5
1-3自組裝團鏈共聚物薄膜之應用 6
1-4 奈米微結構排向與側向有序性之調控 9
1-5 薄膜製備方式之探討 19
1-6 薄膜穩定性 23
第二章 實驗 27
2-1 實驗藥品 27
2-2 實驗儀器 28
2-3 實驗方法 28
2-3-1 基材清洗 28
2-3-2 旋鍍與滴鍍成膜 29
2-3-3 浸鍍成膜 29
2-3-4 混合溶劑退火 30
2-4 儀器分析 32
2-4-1 原子力顯微鏡 32
2-4-2 光學顯微鏡 33
2-4-3 高解析X光繞射儀 33
2-4-4 低掠角式小角度X光散射 34
第三章 實驗結果與討論 36
3-1 溶劑揮發速率之探討 37
3-2浸鍍成膜機制 50
3-3 以混合溶劑退火製備有序垂直圓柱之奈米薄膜模板 56
3-3-1 混合溶劑退火 56
3-3-2 薄膜穩定性 77
第四章 結論 83
參考文獻 85
附錄 92
圖目錄
圖1-1 團鏈共聚物自我排組形成有序微觀相分離示意圖………………….1
圖1-2 由自洽平均場理論計算之AB雙團鏈共聚物相圖…………………..2
圖1-3 聚(苯乙烯-異戊二烯)(PS-b-PI)雙團鏈共聚物之實驗相圖…………..3
圖1-4 聚(苯乙烯-丁二烯-苯乙烯)SBS於不同厚度下的微觀結構與排向…4
圖1-5 動態密度泛函理論模擬A3B12A3在不同界面能下的微結構………..5
圖1-6 自組裝團鏈共聚物光罩應用於奈米光微影製程…………………….6
圖1-7 淺溝渠陣列電容[10]。(a)製備示意圖(b)SEM俯視圖(c) SEM側視
圖…………………………………………………………………………...7
圖1-8 (a)奈米過濾膜製備流程(b)薄膜過濾病毒HRV14之SEM圖(c)AFM高低差圖……………………………………………………………………8
圖1-9 電場誘導排向。(a)加電場(b)未加電場………………………………10
圖1-10 地形起伏磊晶誘導排向示意圖……………………………………...11
圖1-11 化學圖形基材誘導排向與改善微結構陣列,上圖為製備流程,下圖(a)基材表面無化學圖案,下圖(b)基材表面性質有化學圖案…………...12
圖1-12 SBS薄膜於不同揮發速率下之TEM表面相圖。(a)快速~200nL/s(b)中間 ~5nL/s(c)慢速 ~1.5nL/s(d)最慢~0.2nL/s………………………….14
圖1-13 溶劑在團鏈共聚物薄膜揮發水氣凝結在PEO表面示意圖………..15
圖1-14 溶劑退火製備大範圍有序陣列示意圖……………………………...16
圖1-15 (a)奈米孔洞模板製備流程示意圖(b)SEM圖……………………….17
圖1-16 鋸齒狀表面的基材搭配溶劑退火製備大範圍有序陣列…………...18
圖1-17 混合溶劑蒸氣之PS-PDMS相圖…………………………………….19
圖1-18 旋鍍過程示意圖………………………………………………...........20
圖1-19 環圈現象之機制示意圖……………………………………………...22
圖1-20 浸鍍成膜誘導微相結構排向之機制示意圖………………………...22
圖1-21 PS-b-PMMA薄膜在不同厚度下所呈現除潤形貌。(a)Spinodal
dewetting (b) nucleation and growth dewetting…………………………...24
圖1-22 層板結構於不同厚度下的表面相形態……………………………...24
圖2-1 聚苯乙烯聚氧乙烯化學結構式……………………………………...27
圖2-2 浸鍍成膜示意圖……………………………………………………...29
圖2-3 溶劑退火示意圖……………………………………………………...30
圖2-4 以刮痕側厚法測量膜厚。(a)利用AFM探針掃描刮痕處之高低差(b)
凹痕處AFM表面高低差圖(c)凹痕處側面高低差圖……………………31
圖2-5 GISAXS測量示意圖…………………………………………………35
圖2-6 六角圓柱陣列的GISAXS 水平方向一維分析圖…………………..35
圖3-1 溶於不同溶劑配製0.5wt% PS-b-PEO溶液,滴鍍成膜之輕敲式AFM 表面高低差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿………………………38
圖3-2 溶於不同溶劑配製0.5wt% PS-b-PEO溶於不同溶劑,滴鍍成膜之輕敲式AFM 表面相差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿…………….38
圖3-3 溶於不同溶劑配製1wt% PS-b-PEO溶液,滴鍍成膜之輕敲式AFM 表面高低差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿………………………39
圖3-4 溶於不同溶劑配製1wt% PS-b-PEO溶於不同溶劑,滴鍍成膜之輕敲式AFM 表面相差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿……………….40
圖3-5 溶於不同溶劑配製2wt% PS-b-PEO溶液,滴鍍成膜之輕敲式AFM 表面高低差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿………………………40
圖3-6 溶於不同溶劑配製2wt% PS-b-PEO溶於不同溶劑,滴鍍成膜之輕敲式AFM 表面相差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿……………….41
圖3-7 溶於不同溶劑配製0.5wt% PS-b-PEO溶液,旋鍍成膜之輕敲式AFM 表面高低差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿………………............43
圖3-8 溶於不同溶劑配製0.5wt% PS-b-PEO溶液,旋鍍成膜之輕敲式AFM 表面相差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿…………………………43
圖3-9 溶於不同溶劑配製1wt% PS-b-PEO溶液,旋鍍成膜之輕敲式AFM 表面高低差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿………………………44
圖3-10 溶於不同溶劑配製1wt% PS-b-PEO溶液,旋鍍成膜之輕敲式AFM 表面相差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿…………………………44
圖3-11 溶於不同溶劑配製2wt% PS-b-PEO溶液,旋鍍成膜之輕敲式AFM 表面高低差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿………………………45
圖3-12 溶於不同溶劑配製1wt% PS-b-PEO溶液,旋鍍成膜之輕敲式AFM 表面相差圖。(a)甲苯(b)苯(c)四氫呋喃(d)氯仿…………………………45
圖3-13 2 wt % PS-b-PEO的甲苯溶液旋鍍之薄膜之GISAXS散射圖。………………………………………………………………………..46
圖3-14 2 wt% PS-b-PEO的甲苯溶液滴鍍成膜之厚膜GISAXS圖譜……..47
圖3-15 以氧式電漿蝕刻以2wt% PS-b-PEO甲苯溶液滴鍍成膜厚膜之不同深度的AFM表面高低差圖………………………………………………48
圖3-16 以氧式電漿蝕刻以2wt% PS-b-PEO甲苯溶液滴鍍成膜厚膜之不同深度的AFM表面相差圖…………………………………………………49
圖3-17 滴鍍成膜之厚膜相分離微相結構縱深三維示意圖………………...49
圖3-18 (a)XR測量不同拉速率下所浸鍍成膜之膜厚。(b)浸鍍成膜之膜厚與拖曳速度之關係圖………………………………………………………..51
圖3-19 改變不同拖曳速率所浸鍍成膜之PS-b-PEO薄膜式樣之AFM表面相差圖。 (a)0.5mm/s (b)0.75mm/s (c)1mm/s (d)1.25mm/s…………………52
圖3-20 以不同的拖曳速率成膜之PS-b-PEO薄膜式樣的GISAXS 2D散射 圖。(a)0.5mm/s (b)0.75mm/s (c)1mm/s (d)1.25mm/s……………………..53
圖3-21 將上圖2D GISAXS散射圖中沿著水平方向作一維擷取分析圖-(in-plane scan cut)。式樣為以不同的拖曳速率浸鍍成膜: (a)0.5mm/s (b)0.75mm/s (c)1mm/s (d)1.25mm/s………………………………………54
圖3-22 不同拖曳速率對圓柱微結構的影響之3維空間示意圖。(a)拖曳速率為0.5mm/s溶劑揮發速率主導(b) 拖曳速率為1.25mm/s慣性力主導…55
圖3-23 在甲苯/水不同比例混合溶劑蒸氣下,經溶劑退火後之PS-b-PEO薄膜式樣的AFM表面高低差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95………………………………..57
圖3-24 在甲苯/水不同比例混合溶劑蒸氣下,經溶劑退火後之PS-b-PEO薄膜式樣的AFM表面相差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………58
圖3-25 在甲苯/水不同比例混合溶劑蒸氣下,經溶劑退火後之PS-b-PEO薄膜式樣的GISAXS 2D圖譜。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90………………………………………………………58
圖3-26 將上圖2DGISAXS散射圖沿著水平方向作一維掃描擷取圖。不同甲苯/水混合比例:(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90………………………………………………………………...59
圖3-27 溶劑退火時水氣凝結於高分子表面示意圖………………………...60
圖3-28 在甲苯/甲醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面高低差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95…………………………………………..61
圖3-29 在甲苯/甲醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面相差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95…………………………………………..62
圖3-30 在甲苯/甲醇不同比例混合溶劑蒸氣下,經溶劑退火後之PS-b-PEO薄膜式樣的GISAXS 2D圖譜。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90……………………………………………….62
圖3-31 將上圖2DGISAXS散射圖沿著水平方向作一維掃描擷取圖。不同甲苯/甲醇混合比例:(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90………………………………………………………………...63
圖3-32 PS-b-PEO薄膜的表面相形態於甲苯/甲醇不同混合比例之示意圖(a)浸鍍成膜後(b)於高甲苯含量溶劑退火形成凸起的垂直圓柱(c)低甲苯含量溶劑退火形成孔洞的垂直圓柱………………………………………..65
圖3-33 在甲苯/乙醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面高低差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95………………………………………….67
圖3-34 在甲苯/乙醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面相差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95………………………………………….67
圖3-35 在甲苯/乙醇不同比例混合溶劑蒸氣下,經溶劑退火後之PS-b-PEO薄膜式樣的GISAXS 2D圖譜。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90………………………………………………68
圖3-36 將上圖2DGISAXS散射圖沿著水平方向作一維掃描擷取圖。不同甲苯/乙醇混合比例:(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85(g) 10:90………………………………………………………………...68
圖3-37 在甲苯/正丙醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面高低差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95………………………………………..70
圖3-38 在甲苯/正丙醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面相差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95………………………………………..70
圖3-39 在甲苯/正丙醇不同比例混合溶劑蒸氣下,經溶劑退火後之PS-b-PEO薄膜式樣的GISAXS 2D圖譜。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90…………………………………….71
圖3-40 將上圖2DGISAXS散射圖沿著水平方向作一維掃描擷取圖。不同甲苯/正丙醇混合比例:(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90………………………………………………………….71
圖3-41 在甲苯/正丁醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面高低差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………73
圖3-42 在甲苯/正己醇不同混合溶劑蒸氣下,經溶劑退火後PS-b-PEO薄膜式樣的AFM表面高低差圖。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………73
圖3-43 PS-b-PEO團鏈共聚物於不同混合比例下之相形態………………..74
圖3-44 利用反射式OM觀察在甲苯/水不同混合比例混合蒸氣下溶劑退火之薄膜表面。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………………...79
圖3-45 利用反射式OM觀察在甲苯/甲醇不同混合比例混合蒸氣下溶劑退火之薄膜表面。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………………...79
圖3-46 利用反射式OM觀察在甲苯/乙醇不同混合比例混合蒸氣下溶劑退火之薄膜表面。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………………...80
圖3-47 利用反射式OM觀察在甲苯/正丙醇不同混合比例混合蒸氣下溶劑退火之薄膜表面。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………………...80
圖3-48 利用反射式OM觀察在甲苯/正丁醇不同混合比例混合蒸氣下溶劑退火之薄膜表面。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………………...81
圖3-49 利用反射式OM觀察在甲苯/正己醇不同混合比例混合蒸氣下溶劑退火之薄膜表面。(a)95:05 (b)90:10 (c)85:15 (d)60:40 (e)40:60 (f)15:85 (g)10:90 (h)05:95……………………………………………………...81
表目錄
表2-1 四種混合溶劑蒸氣系統於各種比例下的混合蒸氣壓……………...32
表3-1 三種不同製備薄膜方法之比較……………………………………...50
表3-2 高分子與溶劑在25℃之溶解參數…………………………………..76
表3-3 各物質之Hamaker常數………………………………………………82
表3-4 於不同混合蒸氣壓下之有效Hamaker常數…………………………82
參考文獻 [1] M. W. Matsen, and F. S. Bates, “Unifying Weak- and Strong-Segregation Block Copolymer Theories,” Macromolecules, 29, 1091-1098 (1996).
[2] A. K. Khandpur, S. Forster, F. B. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, and K. Mortensen, “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition,” Macromolecules, 28, 8796-8806 (1995).
[3] A. Knoll, A. Horvat, K.S. Lyakhova, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, “Phase Behavior in Thin Films of Cylinder-Forming Block Copolymer,” Phys. Rev. Lett., 89, 035501/1-4 (2002).
[4] A. Horvat, K. S. Lyakhova, G. J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, “Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers:Mesoscale modeling,” J. Chem. Phys., 120, 1117-1126 (2004).
[5] M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter,” Science, 276, 1401-1404 (1997).
[6] P. Mansky, Y. Liu, E. Huang, T. P. Russell, and C. Hawker, “Controlling Polymer-Surface Interactions with Random Copolymer Brushes,” Science, 275, 1458-1460 (1997).
[7] K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, “2.5-inch Disk Patterned Media Prepared by an Artificially Assisted Self-assembling Method,” IEEE Trans. on Magnetics, 38, 1949-1951 (2002).
[8] S. Y. Yang, I. Ryu, H. Y. Kim, J. K. Kim, S. K. Jang, and T. P. Russell, “Nanoporous Membranes with Ultrahigh Selectivity and Flux for the Filtration of Viruses,” Adv. Mater., 18, 709-712 (2006).
[9] D. H. Kim, K. H. A. Lau, J. W. F. Robertson, O. J. Lee, U. Jeong, J. I. Lee, C. J. Hawker, T. P. Russell, J. K. Kim, and W. Knoll, “Thin Films of Block Copolymers as Planar Optical Waveguides,” Adv. Mater., 17, 2442-2446 (2005).
[10] C. T. Black, K. W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I. V.Babich, and K. R.Milkove, “High-capacity,Self-assembled Metal
-Oxide-Semiconductor Decoupling Capacitors,” IEEE Electron Device Lett., 25, 622-624 (2004).
[11] T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, and T. P. Russell, “Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields,” Science, 273, 931-933 (1996).
[12] P. Mansky, J. DeRouchey, T. P. Russell, J. Mays, M. Pitsikalis, T. Morkvedand, and H. Jaeger, “Large-area Domain Alignment in Block Copolymer Thin Films Using Electric Fields,” Macromolecules, 31, 4399–4401 (1998).
[13] E. Han, I. In, S. M. Park, Park Y. H. La, Y. Wang, P. F. Nealey, and P. Gopalan, “Photopatternable Imaging Layers for Controlling Block Copolymer Microdomain Orientation,” Adv. Mater., 19, 4448-4452 (2007).
[14] S. Ji, G. Liu, F. Zheng, G. S. W. Craig , F. J. Himpsel , and P. F. Nealey, “Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends”, Adv. Mater., 20, 3054-3060 (2008).
[15] R. A. Segalman, H. Yokoyama, and E. J. Kramer, “Graphoepitaxy of Spherical Domain Block Copolymer Films,” Adv. Mater., 13, 1152-1155 (2001).
[16] J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, “Fabrication of Nanostructures with Long-Range Order Using Block Copolymer Lithography,” Appl. Phys. Lett., 81, 3657-3659 (2002).
[17] S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, and P. F. Nealey, “Epitaxial Self-Assembly of Block Copolymer on Lithographically Defined Nanopatterned Substrates,” Nature, 424, 411-414 (2003).
[18] J. Y. Cheng, F. Zhang, V. P. Chuang, A. M. Mayes, and C. A. Ross, “Self-Assembled One-Dimensional Nanostructure Arrays,” Nano Lett., 6, 2099-2103 (2006).
[19] L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, and S. G. J. Mochrie, “Polymers on Nanoperiodic, Heterogeneous Surfaces,” Phys. Rev. Lett., 82, 2602-2605 (1999).
[20] X. M. Yang, R. D. Peters, P. F. Nealey, H. H. Solak, and F. Cerrina, “Guided Self-Assembly of Symmetric Diblock Copolymer Films on Chemically Nanopatterned Substrates,” Macromolecules, 33, 9575-9582 (2000).
[21] S. M. Park, G. S. W. Craig, Y. H. La, and P. F. Nealey, “Morphological Reconstruction and Ordering in Films of Sphere-Forming Block Copolymers on Striped Chemically Patterned Surfaces,” Macromolecules, 41, 9124-9129 (2008).
[22] G. Kim, and M. Libera, “Morphological Development in Solvent-Cast Polystyrene– Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films,” Macromolecules, 31, 2569-2577, (1998).
[23] G. Kim, and M. Libera, “Kinetic Constraints on the Development of Surface Microstructure in SBS Thin Films,” Macromolecules, 31, 2670-2672 (1998).
[24] Q. Zhang, O. K. C. Tsui, B. Du, F. Zhang, T. Tang, and T. He, “Observation of Inverted Phases in Poly(styrene-b-butadiene-b-styrene) Triblock Copolymer by Solvent-Induced Order−Disorder Phase Transition,” Macromolecules, 33, 9561-9567 (2000).
[25] J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns,” Adv. Mater., 21, 1-24(2009).
[26] J. Bang, S. H. Kim, E. Drockenmuller, M. J. Misner, T. P. Russell, and C. J. Hawke, “Defect-Free Nanoporous Thin Films from ABC Triblock Copolymers,” J. Am. Chem. Soc., 128, 7622-7629 (2006).
[27] S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russell, “Macroscopic 10-Terabit per Square-Inch Arrays from Block copolymer with lateral order,” Science, 323, 1030-1033 (2009).
[28] S. Ludwigs, K. Schmidt, C. M. Stafford, E. J. Amis, M. J. Fasolka, A. Karim, R. Magerle, and G. Krausch, “Combinatorial Mapping of the Phase Behavior of ABC Triblock Terpolymers in Thin Films: Experiments,” Macromolecules, 38, 1850-1858 (2005).
[29] Y. S. Jung, and C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns,” Adv. Mater., 21, 1-6 (2009).
[30] D. Bornside, C.W. Macosko, and L. E. Scriven, “On the modeling of spin coating,” J. maging Technol., 13, 122-130 (1987).
[31] 范慧雯,「剪切力誘導PS-PLLA團聯共聚物奈米微結構定向-奈米圖案成形之製備」,國立中興大學化學工程研究所碩士論文 (2003)。
[32] W.J. Daughton, and F. L.Givens, “An Investigation of the Thickness Variation of Spun-on Thin-films Commonly with the Semiconductor Inhdustry,” J. Electrochem. Soc., 129, 173-179 (1982).
[33] F. L. Givens, and W.J. Daughton, “On the Uniformity of Films:a New Technique Applied to Polyimides,” J. Electrochem. Soc., 126, 269-276 (1979).
[34] K. E. Strawhecker, S. K. Kumar, J. F. Douglas, and A. Karim, “The Critical Role of Solvent Evaporation on the Roughness of Spin-Cast Polymer Films,” Macromolecules, 34, 4669-4672 (2001).
[35] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary Flowasthe Cause of Ring Stains From Dried Liquid Drops,” Nature, 389, 827-829 (1997).
[36] L. Landau, and B. Levich, “Dragging of a Liquid by a Moving Plate,” Acta Physicochimi URSS., 17, 42-54 (1942).
[37] R. Limary, P. F. Green, and K. R. Shull, “Influence of Surface Ordering on the Wetting of Structured Liquids,” Eur. Phys. J. E, 8,103-110 (2002).
[38] I. W. Hamley, “Ordering in Thin Films of Block Copolymers: Fundamentals to Potential Applications,” Progress in Polymer Science, 34, 1161-1210 (2009)
[39] K. D. F. Wensink, and B. Jérôme, “Dewetting Induced by Density Fluctuations,” Langmuir, 18, 413-416 (2002).
[40] S. H. Lee, P. J. Yoo, S. J. Kwon, and H. H. Lee, “Solvent-Driven Dewetting and Rim Instability,” J. Chem. Phys., 121, 4346-4351 (2004).
[41] P. Müller-Buschbaum, E. Bauer, O. Wunnicke, and M. Stamm, “The Control of Thin Film Morphology by the Interplay of Dewetting, Phase Separation and Microphase Separation,” J. Phys.: Condens. Matter, 17, S363-S386 (2005).
[42] J. Peng, Y. Xuan, H. Wang, B. Li, and Y. Han, “Solvent Vapor Induced Dewetting in Diblock Copolymer Thin Films,” Polymer, 46, 5767-5772 (2005).
[43] G. Reiter, A. Sharma, A. Casoli, M. O. David, R. Khanna, and P. Auroy, “Thin Film Instability Induced by Long-Range Forces,” Langmuir 15, 2551-2558 (1999).
[44] R. Xing, C. Luo, Z. Wang, C. Luo, Z. Wang, and Y. Han, “Dewetting of Polymethyl Methacrylate on the Patterned Elastomer Substrate by Solvent Vapor Treatment,” Polymer, 48, 3574-3583 (2007).
[45] J. P. Spatz, S. Sheiko, and M. Möller, “Substrate-Induced Lateral Micro-Phase Separation of a Diblock Copolymer,” Adv. Mater., 8, 513-517 (1996).
[46] P. J. Flory, Principles of Polymer Chemistry, 3/e, Cornell University Press, USA, 1989.
[47] R. W. Carpick, and M. Salmeron, “Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy,” Chem. Rev., 97, 1163-1194 (1997).
[48] D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography, Taylor & Francis, UK, 2002.
[49] 鄭有舜,「X-光小角度散射在軟物質研究上的應用」,物理雙月刊,廿六卷二期,416-424,93年4月。
[50] R. M. Ho, W. H. Tseng, H. W. Fan, Y. W. Chiang, C. C. Lin, B. T. Ko, and B. H. Huang, “Solvent-Induced Microdomain Orientation in Polystyrene-b-Poly(l-lactide) Diblock Copolymer Thin Films for Nanopatterning,” Polymer, 46, 9362-9377 (2005).
[51] V. Khanna, E. W. Cochran, A. Hexemer, G. E. Stein, G. H. Fredrickson, E. J. Kramer, X. Li, J. Wang, S. F. Hahn, “Effect of Chain Architecture and Surface Energies on the Ordering Behavior of Lamellar and Cylinder Forming Block Copolymers,” Macromolecules, 39, 9346-9356 (2006).
[52] S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure Formation via Polymer Demixing in Spin-Cast Films,” Macromolecules, 30, 4955-5003 (1997).
[53] H. Elbs, K. Fukunaga, R. Stadler, G. Sauer, R. Magerle, and G. Krausch, “Microdomain Morphology of Thin ABC Triblock Copolymer Films,” Macromolecules, 32, 1204-1211 (1999).
[54] K. A. Cavicchi, K. J. Berthiaume, and T. P. Russell, “Solvent Annealing Thin Films of Poly(isoprene-b-lactide),” Polymer, 46, 11635-11639 (2005).
[55] M. Takenaka, T. Wakada, S. Akasaka, S. Nishitsuji, K.Saijo, H. Shimizu, and H. Hasegawa, “Orthorhombic Fddd Network in Diblock Copolymer Melts,” Macromolecules, 40, 4399-4402 (2007).
[56] M. I. Kim, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Hasegawa, K. Ito, and M. Takenaka, “Determination of the Fddd Phase Boundary in Polystyrene-block-Polyisoprene Diblock Copolymer Melts,” Macromolecules, 42, 5266-5271 (2009).
[57] J. Jung, H. W. Park, S. Lee H. Lee, T. Chang, K. Matsunaga, and H. Jinnai, “Effect of Film Thickness on the Phase Behaviors of Diblock Copolymer Thin Film,” ACS NANO, 4, 3109-3116 (2010).
[58] H. Mao, and M. A. Hillmyer, “Macroscopic Samples of Polystyrene with Ordered Three-Dimensional Nanochannels, ” Soft Matter, 2, 57-59 (2006).
[59] F. Haken, and J. Lal, “Polyelectrolyte-like Behavior of Poly(ethylene-oxide) solutions with added monovalent salt,” Europhys. Lett., 64, 204-210 (2003).
[60] T. P. Lodge, K. J. Hanley, B. Pudil, and V. Alahapperuma, “Phase Behavior of Block Copolymers in a Neutral Solvent,” Macromolecules, 36, 816-822 ( 2003).
[61] C. Lai, W. B. Russell, and R. A. Register, “Phase Behavior of Styrene-Isoprene Diblock Copolymers in Strongly Selective Solvents,” Macromolecules, 35, 841-849 ( 2002).
[62] P. J. Flory, “Thermodynamics of High Polymer Solutions,” J. Chem. Phys., 10, 51-62(1942).
[63] J. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, 3/e, Reinhold, New York, 1950.
[64] M. L. Huggins, “Theory of Solutions of High Polymers,” J. Am. Chem. Soc., 64, 1712-1719(1942).
[65] J. H. Hildebrand, “Solubility. XII. Regular Solutions,”J. Am. Chem. Soc., 51, 66-80(1929).
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明