參考文獻 |
1. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002, 415 (6870), 389-395.
2. Yeaman, M. R.; Yount, N. Y., Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55 (1), 27-55.
3. Mitra, R. N.; Shome, A.; Paul, P.; Das, P. K., Antimicrobial activity, biocompatibility and hydrogelation ability of dipeptide-based amphiphiles. Org. Biomol. Chem. 2009, 7 (1), 94-102.
4. Matsuzaki, K., Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (8), 1687-1692.
5. Yu, P. L.; Cross, M. L.; Haverkamp, R. G., Antimicrobial and immunomodulatory activities of an ovine proline/arginine-rich cathelicidin. Int. J. Antimicrob. Ag. 2010, 35 (3), 288-291.
6. Gordon, Y. J.; Romanowski, E. G.; McDermott, A. M., A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs. Current. Eye. Research. 2005, 30 (7), 505-515.
7. Selsted, M. E.; Novotny, M. J.; Morris, W. L.; Tang, Y. Q.; Smith, W.; Cullor, J. S., Indolicidin, a Novel Bactericidal Tridecapeptide Amide from Neutrophils. J. Biol. Chem. 1992, 267 (7), 4292-4295.
8. Ahmad, I.; Perkins, W. R.; Lupan, D. M.; Selsted, M. E.; Janoff, A. S., Liposomal Entrapment of the Neutrophil-Derived Peptide Indolicidin Endows It with in-Vivo Antifungal Activity. Biochim. Biophys. Acta-Biomembr. 1995, 1237 (2), 109-114.
9. Giacometti, A.; Cirioni, O.; Greganti, G.; Quarta, M.; Scalise, G., In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Antimicrob. Agents Chemother. 1998, 42 (12), 3320-3324.
10. Saido-Sakanaka, H.; Ishibashi, J.; Momotani, E.; Amano, F.; Yamakawa, M., In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin. Peptides 2004, 25 (1), 19-27.
11. Friedrich, C. L.; Rozek, A.; Patrzykat, A.; Hancock, R. E. W., Structure and Mechanism of Action of an Indolicidin Peptide Derivative with Improved Activity against Gram-positive Bacteria. J. Biol. Chem. 2001, 276 (26), 24015-24022.
12. Friedrich, C. L.; Moyles, D.; Beveridge, T. J.; Hancock, R. E. W., Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Ch 2000, 44 (8), 2086-2092.
13. Bhargava, A.; Osusky, M.; Hancock, R. E.; Forward, B. S.; Kay, W. W.; Misra, S., Antiviral indolicidin variant peptides: Evaluation for broad-spectrum disease resistance in transgenic Nicotiana tabacum. Plant. Sci. 2007, 172 (3), 515-523.
14. Robinson, W. E.; McDougall, B.; Tran, D.; Selsted, M. E., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 1998, 63 (1), 94-100.
15. Yasin, B.; Pang, M.; Turner, J. S.; Cho, Y.; Dinh, N. N.; Waring, A. J.; Lehrer, R. I.; Wagar, E. A., Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19 (3), 187-194.
16. Schluesener, H. J.; Radermacher, S.; Melms, A.; Jung, S., Leukocytic antimicrobial peptides kill autoimmune T cells. J. Neuroimmunol. 1993, 47 (2), 199-202.
17. Subbalakshmi, C.; Krishnakumari, V.; Nagaraj, R.; Sitaram, N., Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett. 1996, 395 (1), 48-52.
18. Falla, T. J.; Hancock, R. E. W., Improved activity of a synthetic indolicidin analog. Antimicrob. Agents Chemother. 1997, 41 (4), 771-775.
19. Subbalakshmi, C.; Bikshapathy, E.; Sitaram, N.; Nagaraj, R., Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin. Biochem. Biophys. Res. Commun. 2000, 274 (3), 714-716.
20. Staubitz, P.; Peschel, A.; Nieuwenhuizen, W. F.; Otto, M.; Gotz, F.; Jung, G.; Jack, R. W., Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. J. Pept. Sci. 2001, 7 (10), 552-564.
21. Halevy, R.; Rozek, A.; Kolusheva, S.; Hancock, R. E. W.; Jelinek, R., Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides 2003, 24 (11), 1753-1761.
22. Yang, S. T.; Shin, S. Y.; Hahm, K. S.; Il Kim, J., Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int. J. Antimicrob. Agents 2006, 27 (4), 325-330.
23. Falla, T. J.; Karunaratne, D. N.; Hancock, R. E. W., Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 1996, 271 (32), 19298-19303.
24. Wu, M. H.; Maier, E.; Benz, R.; Hancock, R. E. W., Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 1999, 38 (22), 7235-7242.
25. Ladokhin, A. S.; Selsted, M. E.; White, S. H., Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys. J. 1997, 72 (2), 794-805.
26. Caputo, G. A.; London, E., Using a Novel Dual Fluorescence Quenching Assay for Measurement of Tryptophan Depth within Lipid Bilayers To Determine Hydrophobic α-Helix Locations within Membranes. Biochemistry 2003, 42 (11), 3265-3274.
27. Hancock, R. E. W.; Chapple, D. S., Peptide Antibiotics. Antimicrob. Agents Chemother. 1999, 43 (6), 1317-1323.
28. Papagianni, M., Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol. Adv. 2003, 21 (6), 465-499.
29. NissenMeyer, J.; Nes, I. F., Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 1997, 167 (2-3), 67-77.
30. Hancock, R. E. W.; Diamond, G., The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000, 8 (9), 402-410.
31. Wang, Z.; Wang, G., APD: the Antimicrobial Peptide Database. Nucl. Acids Res. 2004, 32 (suppl_1), D590-592.
32. Wang, G.; Li, X.; Wang, Z., APD2: the updated antimicrobial peptide database and its application in peptide design. Nucl. Acids Res. 2009, 37 (suppl_1), D933-937.
33. Bechinger, B., Structure and Functions of Channel-Forming Peptides: Magainins, Cecropins, Melittin and Alamethicin. J. Membr. Biol. 1997, 156 (3), 197-211.
34. Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M., Dermaseptin S9, an α-Helical Antimicrobial Peptide with a Hydrophobic Core and Cationic Termini. Biochemistry 2005, 45 (2), 468-480.
35. Houston, M. E.; Kondejewski, L. H.; Karunaratne, D. N.; Gough, M.; Fidai, S.; Hodges, R. S.; Hancock, R. E. W., Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides. J. Pept. Res. 1998, 52 (2), 81-88.
36. Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M., Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry 2006, 45 (2), 468-480.
37. Powers, J.-P. S.; Rozek, A.; Hancock, R. E. W., Structure-activity relationships for the [beta]-hairpin cationic antimicrobial peptide polyphemusin I. BBA-Proteins Proteomics 2004, 1698 (2), 239-250.
38. Schibli, D. J.; Hwang, P. M.; Vogel, H. J., Structure of the Antimicrobial Peptide Tritrpticin Bound to Micelles: A Distinct Membrane-Bound Peptide Fold. Biochemistry 1999, 38 (51), 16749-16755.
39. Rozek, A.; Friedrich, C. L.; Hancock, R. E. W., Structure of the Bovine Antimicrobial Peptide Indolicidin Bound to Dodecylphosphocholine and Sodium Dodecyl Sulfate Micelles. Biochemistry 2000, 39 (51), 15765-15774.
40. Appelt, C.; Wessolowski, A.; Söderhäll, J. A.; Dathe, M.; Schmieder, P., Structure of the Antimicrobial, Cationic Hexapeptide Cyclo(RRWWRF) and Its Analogues in Solution and Bound to Detergent Micelles. Chem. Bio. Chem. 2005, 6 (9), 1654-1662.
41. Vignal, E.; Chavanieu, A.; Roch, P.; Chiche, L.; Grassy, G.; Calas, B.; Aumelas, A., Solution structure of the antimicrobial peptide ranalexin and a study of its interaction with perdeuterated dodecylphosphocholine micelles. Europ. J. Biochem. 1998, 253 (1), 221-228.
42. Uteng, M.; Hauge, H. H.; Markwick, P. R. L.; Fimland, G.; Mantzilas, D.; Nissen-Meyer, J.; Muhle-Goll, C., Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridges. Biochemistry 2003, 42 (39), 11417-11426.
43. Hirsch, T.; Metzig, M.; Niederbichler, A.; Steinau, H. U.; Eriksson, E.; Steinstraesser, L., Role of host defense peptides of the innate immune response in sepsis. Shock 2008, 30 (2), 117-126.
44. De Smet, K.; Contreras, R., Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 2005, 27 (18), 1337-1347.
45. Nizet, V.; Gallo, R. L., Cathelicidins and innate defense against invasive bacterial infection. Scand. J. Infect. Dis. 2003, 35 (9), 670-676.
46. Shafer, W. M.; Katzif, S.; Bowers, S.; Fallon, M.; Hubalek, M.; Reed, M. S.; Veprek, P.; Pohl, J., Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens. Curr. Pharm. Design. 2002, 8 (9), 695-702.
47. Schutte, B. C.; McCray, P. B., beta-defensins in lung host defense. Annu. Rev. Physiol. 2002, 64, 709-748.
48. Frecer, V.; Ho, B.; Ding, J. L., De Novo Design of Potent Antimicrobial Peptides. Antimicrob. Agents. Chemother. 2004, 48 (9), 3349-3357.
49. Hilpert, K.; Volkmer-Engert, R.; Walter, T.; Hancock, R. E. W., High-throughput generation of small antibacterial peptides with improved activity. Nat. Biotechnol. 2005, 23 (8), 1008-1012.
50. Rathinakumar, R.; Walkenhorst, W. F.; Wimley, W. C., Broad-Spectrum Antimicrobial Peptides by Rational Combinatorial Design and High-Throughput Screening: The Importance of Interfacial Activity. J. Am. Chem. Soc. 2009, 131 (22), 7609-7617.
51. Rausch, J. M.; Marks, J. R.; Wimley, W. C., Rational combinatorial design of pore-forming β-sheet peptides. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (30), 10511-10515.
52. Stromstedt, A. A.; Pasupuleti, M.; Schmidtchen, A.; Malmsten, M., Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (9), 1916-1923.
53. Bechinger, B., Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr. Opin. Colloid. In. 2009, 14 (5), 349-355.
54. Jelokhani-Niaraki, M.; Hodges, R. S.; Meissner, J. E.; Hassenstein, U. E.; Wheaton, L., Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes. Biophys. J. 2008, 95 (7), 3306-3321.
55. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by [alpha]-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta-Biomembr. 1999, 1462 (1-2), 55-70.
56. Sitaram, N.; Nagaraj, R., Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim. Biophys. Acta-Biomembr. 1999, 1462 (1-2), 29-54.
57. Andrushchenko, V. V.; Aarabi, M. H.; Nguyen, L. T.; Prenner, E. J.; Vogel, H. J., Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochim. Biophys. Acta. 2008, 1778 (4), 1004-14.
58. Chan, D. I.; Prenner, E. J.; Vogel, H. J., Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1184-1202.
59. Kosol, S.; Zangger, K., Dynamics and orientation of a cationic antimicrobial peptide in two membrane-mimetic systems. J. Struct. Biol. 2010, 170 (1), 172-179.
60. Mason, A. J.; Marquette, A.; Bechinger, B., Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization. Biophys. J. 2007, 93 (12), 4289-4299.
61. Dusa, A.; Kaylor, J.; Edridge, S.; Bodner, N.; Hong, D.-P.; Fink, A. L., Characterization of Oligomers during α-Synuclein Aggregation Using Intrinsic Tryptophan Fluorescence. Biochemistry 2006, 45 (8), 2752-2760.
62. Schwarz, G., A universal thermodynamic approach to analyze biomolecular binding experiments. Biophys. Chem. 2000, 86 (2-3), 119-129.
63. Raghuraman, H.; Chattopadhyay, A., Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers 2006, 83 (2), 111-121.
64. Vad, B.; Thomsen, L. A.; Bertelsen, K.; Franzmann, M.; Pedersen, J. M.; Nielsen, S. B.; Vosegaard, T.; Valnickova, Z.; Skrydstrup, T.; Enghild, J. J.; Wimmer, R.; Nielsen, N. C.; Otzen, D. E., Divorcing folding from function: How acylation affects the membrane-perturbing properties of an antimicrobial peptide. BA-Proteins Proteomics 2010, 1804 (4), 806-820.
65. Rotem, S.; Radzishevsky, I. S.; Bourdetsky, D.; Navon-Venezia, S.; Carmeli, Y.; Mor, A., Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. Faseb. J. 2008, 22 (8), 2652-2661.
66. Jiang, Z. Q.; Vasil, A. I.; Hale, J. D.; Hancock, R. E. W.; Vasil, M. L.; Hodges, R. S., Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 2008, 90 (3), 369-383.
67. Lee, D. L.; Powers, J. P. S.; Pflegerl, K.; Vasil, M. L.; Hancock, R. E. W.; Hodges, R. S., Effects of single D-amino acid substitutions on disruption of beta-sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide analogs related to gramicidin S. J. Pept. Res. 2004, 63 (2), 69-84.
68. Ando, S.; Nishikawa, H.; Takiguchi, H.; Lee, S.; Sugihara, G., Antimicrobial Specificity and Hemolytic-Activity of Cyclized Basic Amphiphilic Beta-Structural Model Peptides and Their Interactions with Phospholipid-Bilayers. Biochim. Biophys. Acta. 1993, 1147 (1), 42-49.
69. Davidson, D. J.; Currie, A. J.; Reid, G. S. D.; Bowdish, D. M. E.; MacDonald, K. L.; Ma, R. C.; Hancock, R. E. W.; Speert, D. P., The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004, 172 (2), 1146-1156.
70. Chaly, Y. V.; Paleolog, E. M.; Kolesnikova, T. S.; Tikhonov, I. I.; Petratchenko, E. V.; Voitenok, N. N., Human neutrophil alpha-defensin modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine. Netw. 2000, 11 (2), 257-266.
71. El Amri, C.; Lacombe, C.; Zimmerman, K.; Ladram, A.; Amiche, M.; Nicolas, P.; Bruston, F., The plasticins: Membrane adsorption, lipid disorders, and biological activity. Biochemistry 2006, 45 (48), 14285-14297.
72. Chekmenev, E. Y.; Vollmar, B. S.; Forseth, K. T.; Manion, M. N.; Jones, S. M.; Wagner, T. J.; Endicott, R. M.; Kyriss, B. P.; Homem, L. M.; Pate, M.; He, J.; Raines, J.; Gor'kov, P. L.; Brey, W. W.; Mitchell, D. J.; Auman, A. J.; Ellard-Ivey, M. J.; Blazyk, J.; Cotten, M., Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1359-1372.
73. Mani, R.; Waring, A. J.; Lehrer, R. I.; Hong, M., Membrane-disruptive abilities of beta-hairpin antimicrobial peptides correlate with conformation and activity: A P-31 and H-1 NMR study. Biochim. Biophys. Acta-Biomembr. 2005, 1716 (1), 11-18.
74. Bechinger, B., Structure and function of membrane-lytic peptides. Crit. Rev. Plant.Sci. 2004, 23 (3), 271-292.
75. Tachi, T.; Epand, R. F.; Epand, R. M.; Matsuzaki, K., Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 2002, 41 (34), 10723-10731.
76. Jelokhani-Niaraki, M.; Prenner, E. J.; Kay, C. M.; McElhaney, R. N.; Hodges, R. S., Conformation and interaction of the cyclic cationic antimicrobial peptides in lipid bilayers. J. Pept. Res. 2002, 60 (1), 23-36.
77. Chan, D. I.; Prenner, E. J.; Vogel, H. J., Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1184-1202.
78. Ramamoorthy, A.; Lee, D.-K.; Narasimhaswamy, T.; Nanga, R. P. R., Cholesterol reduces pardaxin's dynamics--a barrel-stave mechanism of membrane disruption investigated by solid-state NMR. Biochim. Biophys. Acta-Biomembr. 2010, 1798 (2), 223-227.
79. Galanth, C.; Abbassi, F.; Lequin, O.; Ayala-Sanmartin, J.; Ladram, A.; Nicolas, P.; Amiche, M., Mechanism of Antibacterial Action of Dermaseptin B2: Interplay between Helix-Hinge-Helix Structure and Membrane Curvature Strain. Biochemistry 2009, 48 (2), 313-327.
80. Lu, J. X.; Blazyk, J.; Lorigan, G. A., Exploring membrane selectivity of the antimicrobial peptide KIGAKI using solid-state NMR spectroscopy. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1303-1313.
81. Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.; Huang, H. W., Membrane pores induced by magainin. Biochemistry 1996, 35 (43), 13723-13728.
82. Leontiadou, H.; Mark, A. E.; Marrink, S. J., Antimicrobial peptides in action. J. Am. Chem. Soc. 2006, 128 (37), 12156-12161.
83. Chen, F. Y.; Lee, M. T.; Huang, H. W., Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys. J. 2003, 84 (6), 3751-3758.
84. Sengupta, D.; Leontiadou, H.; Mark, A. E.; Marrink, S. J., Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta-Biomembr. 2008, 1778 (10), 2308-2317.
85. Hsu, C. H.; Chen, C. P.; Jou, M. L.; Lee, A. Y. L.; Lin, Y. C.; Yu, Y. P.; Huang, W. T.; Wu, S. H., Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucl. Acids Res. 2005, 33 (13), 4053-4064.
86. Subbalakshmi, C.; Sitaram, N., Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 1998, 160 (1), 91-96.
87. Sitaram, N.; Subbalakshmi, C.; Nagaraj, R., Indolicidin, a 13-residue basic antimicrobial peptide rich in tryptophan and proline, interacts with Ca2+-calmodulin. Biochem. Biophys. Res. Commun. 2003, 309 (4), 879-884.
88. Zhao, H.; Kinnunen, P. K. J., Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides. Antimicrob. Agents Chemother. 2003, 47 (3), 965-971.
89. Ha, T. H.; Kim, C. H.; Park, J. S.; Kim, K., Interaction of indolicidin with model lipid bilayer: Quartz crystal microbalance and atomic force microscopy study. Langmuir 2000, 16 (2), 871-875.
90. Lee, D. G.; Kim, H. K.; Kim, S. A.; Park, Y.; Park, S. C.; Jang, S. H.; Hahm, K. S., Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem. Biophys. Res. Commun. 2003, 305 (2), 305-310.
91. Shaw, J. E.; Alattia, J. R.; Verity, J. E.; Prive, G. G.; Yip, C. M., Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J. Struct. Biol. 2006, 154 (1), 42-58.
92. Hsu, J. C. Y.; Yip, C. M., Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys. J. 2007, 92 (12), L100-L102.
93. Khandelia, H.; Kaznessis, Y. N., Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: Molecular dynamics simulations. J. Phys. Chem. B 2007, 111 (1), 242-250.
94. Chan, C.; Burrows, L. L.; Deber, C. M., Helix induction in antimicrobial peptides by alginate in biofilms. J. Biol. Chem. 2004, 279 (37), 38749-38754.
95. Kamath, S. D.; Kartha, V. B.; Mahato, K. K., Dynamics of l-tryptophan in aqueous solution by simultaneous laser induced fluorescence (LIF) and photoacoustic spectroscopy (PAS). Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2008, 70 (1), 187-194.
96. Kiyota, T.; Lee, S.; Sugihara, G., Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry 1996, 35 (40), 13196-13204.
97. Sugawara, M.; Resende, J. M.; Moraes, C. M.; Marquette, A.; Chich, J. F.; Metz-Boutigue, M. H.; Bechinger, B., Membrane structure and interactions of human catestatin by multidimensional solution and solid-state NMR spectroscopy. Faseb. J. 2010, 24 (6), 1737-1746.
98. Galdiero, S.; Falanga, A.; Vitiello, G.; Vitiello, M.; Pedone, C.; D'Errico, G.; Galdiero, M., Role of membranotropic sequences from herpes simplex virus type I glycoproteins B and H in the fusion process. Biochim. Biophys. Acta-Biomembr. 2010, 1798 (3), 579-591.
99. Ladokhin, A. S.; Wimley, W. C.; White, S. H., Leakage of membrane vesicle contents: Determination of mechanism using fluorescence requenching. Biophys. J. 1995, 69 (5), 1964-1971.
100. Xu, Z. P.; Paparcone, R.; Buehler, M. J., Alzheimer's A beta(1-40) Amyloid Fibrils Feature Size-Dependent Mechanical Properties. Biophys. J. 2010, 98 (10), 2053-2062.
101. Steinhauser, M. O.; Hiermaier, S., A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics. Int. J. Mol. Sci. 2009, 10 (12), 5135-5216.
102. Kind, M.; Woll, C., Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Prog. Surf. Sci. 2009, 84 (7-8), 230-278.
103. Georgantzinos, S. K.; Giannopoulos, G. I.; Anifantis, N. K., Investigation of stress-strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method. Theor. Appl. Fract. Mec. 2009, 52 (3), 158-164.
104. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'homme, R. K.; Brinson, L. C., Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3 (6), 327-331.
105. Praprotnik, M.; Junghans, C.; Delle Site, L.; Kremer, K., Simulation approaches to soft matter: Generic statistical properties vs. chemical details. Comput. Phys. Commun. 2008, 179 (1-3), 51-60.
106. Sakae, Y.; Okamoto, Y., Determination method of the balance of the secondary-structure-forming tendencies of force fields. Mol. Simulat. 2010, 36 (2), 159-165.
107. Juraszek, J.; Bolhuis, P. G., Effects of a Mutation on the Folding Mechanism of beta-Hairpin. J. Phys. Chem. B 2009, 113 (50), 16184-16196.
108. Tuszynska, I.; Bujnicki, J. M., Predicting Atomic Details of the Unfolding Pathway for YibK, a Knotted Protein from the SPOUT Superfamily. J. Biomol. Struct. Dyn. 2010, 27 (4), 511-520.
109. Kannan, S.; Zacharias, M., Folding simulations of Trp-cage mini protein in explicit solvent using biasing potential replica-exchange molecular dynamics simulations. Proteins 2009, 76 (2), 448-460.
110. Ulmschneider, M. B.; Ulmschneider, J. P., Folding Peptides into Lipid Bilayer Membranes. J. Chem. Theory. Comput. 2008, 4 (11), 1807-1809.
111. Monticelli, L.; Sorin, E. J.; Tieleman, D. P.; Pande, V. S.; Colombo, G., Molecular simulation of multistate peptide dynamics: A comparison between microsecond timescale sampling and multiple shorter trajectories. J. Comput. Chem. 2008, 29 (11), 1740-1752.
112. Jang, S.; Shin, S., Computational study on the structural diversity of amyloid beta peptide (A beta(10-35)) oligomers. J. Phys. Chem. B 2008, 112 (11), 3479-3484.
113. Tsai, L.; Chen, H. W.; Lin, T.; Wang, W. Z.; Sun, Y. C., Molecular dynamics simulation of folding of a short helical toxin peptide. J. Theor. Comput. Chem. 2007, 6 (2), 213-221.
114. Legge, E. S.; Treutlein, H.; Howlett, G. J.; Yarovsky, I., Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Biophys. Chem. 2007, 130 (3), 102-113.
115. Rundgren, H.; Mark, P.; Laaksonen, A., Molecular dynamics simulations of conserved Hox protein hexapeptides. I. Folding behavior in water solution. J. Mol. Struc-Theochem 2007, 810 (1-3), 113-120.
116. Bratko, D.; Cellmer, T.; Prausnitz, J. M.; Blanch, H. W., Molecular simulation of protein aggregation. Biotechnol. Bioeng. 2007, 96 (1), 1-8.
117. Daura, X., Molecular dynamics simulation of peptide folding. Theor. Chem. Acc. 2006, 116 (1-3), 297-306.
118. Lei, H. X.; Wu, C.; Wang, Z. X.; Duan, Y., Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta 2-microglobulin: Implication for the protofibril structure. J. Mol. Biol. 2006, 356 (4), 1049-1063.
119. Jayapal, P.; Mayer, G.; Heckel, A.; Wennmohs, F., Structure-activity relationships of a caged thrombin binding DNA aptamer: Insight gained from molecular dynamics simulation studies. J. Struct. Biol. 2009, 166 (3), 241-250.
120. Tanida, Y.; Ito, M. S.; Fujitani, H., Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values. Chem. Phys. 2007, 337 (1-3), 135-143.
121. Golebiowski, J.; Antonczak, S.; Fernandez-Carmona, J.; Condom, R.; Cabrol-Bass, D., Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations. J. Mol. Model. 2004, 10 (5-6), 408-417.
122. Schneider, C.; Suhnel, J., A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex. Biopolymers 1999, 50 (3), 287-302.
123. Mohanty, D.; Bansal, M., Chain Folding and a-T Pairing in Human Telomeric DNA - a Model-Building and Molecular-Dynamics Study. Biophys. J. 1995, 69 (3), 1046-1067.
124. Tzvetanov, S.; Shushkov, P.; Velinova, M.; Ivanova, A.; Tadjer, A., Molecular Dynamics Study of the Electric and Dielectric Properties of Model DPPC and Dicaprin Insoluble Monolayers: Size Effect. Langmuir 2010, 26 (11), 8093-8105.
125. Psachoulia, E.; Marshall, D. P.; Sansom, M. S. P., Molecular Dynamics Simulations of the Dimerization of Transmembrane alpha-Helices. Accounts. Chem. Res. 2010, 43 (3), 388-396.
126. Mehrnejad, F.; Zarei, M., Molecular Dynamics Simulation Study of the Interaction of Piscidin 1 with DPPC Bilayers: Structure-Activity Relationship. J. Biomol. Struct. Dyn. 2010, 27 (4), 551-559.
127. Capone, R.; Mustata, M.; Jang, H.; Arce, F. T.; Nussinov, R.; Lal, R., Antimicrobial Protegrin-1 Forms Ion Channels: Molecular Dynamic Simulation, Atomic Force Microscopy, and Electrical Conductance Studies. Biophys. J. 2010, 98 (11), 2644-2652.
128. Linse, P., On the convergence of simulation of asymmetric electrolytes with charge asymmetry 60 : 1. J. Chem. Phys. 1999, 110 (7), 3493-3501.
129. Lai, S. K.; Kau, C. Y.; Tang, Y. W.; Chan, K. Y., Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores. Phys. Rev. E 2004, 69 (5).
130. Bahar, I.; Badur, B.; Doruker, P., Solvent Effect on Translational Diffusivity and Orientational Mobility of Polymers in Solution - a Molecular-Dynamics Study. J. Chem. Phys. 1993, 99 (3), 2235-2246.
131. Prathab, B.; Subramanian, V.; Aminabhavi, T. M., Computation of surface energy and surface segregation phenomena of perfluorinated copolymers and blends - A molecular modeling approach. Polymer 2007, 48 (1), 417-424.
132. Tieleman, D. P.; Sansom, M. S. P., Molecular dynamics simulations of antimicrobial peptides: From membrane binding to trans-membrane channels. Int. J. Quantum. Chem. 2001, 83 (3-4), 166-179.
133. Tang, M.; Waring, A. J.; Hong, M., Effects of arginine density on the membrane-bound structure of a cationic antimicrobial peptide from solid-state NMR. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (2), 514-521.
134. Mani, R.; Cady, S. D.; Tang, M.; Waring, A. J.; Lehrert, R. I.; Hong, M., Membrane-dependent oligomeric structure and pore formation of beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. P. Natl. Acad. Sci. U.S.A. 2006, 103 (44), 16242-16247.
135. Papo, N.; Shai, Y., A molecular mechanism for lipopolysaccharide protection of gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 2005, 280 (11), 10378-10387.
136. Henzler-Wildman, K. A.; Martinez, G. V.; Brown, M. F.; Ramamoorthy, A., Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 2004, 43 (26), 8459-8469.
137. Shepherd, C. M.; Vogel, H. J.; Tieleman, D. P., Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations. Biochem. J. 2003, 370, 233-243.
138. Schibli, D. J.; Epand, R. F.; Vogel, H. J.; Epand, R. M., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem. Cell. Biol. 2002, 80 (5), 667-677.
139. Pimthon, J.; Willumeit, R.; Lendlein, A.; Hofmann, D., Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study. J. Pept. Sci. 2009, 15 (10), 654-667.
140. Manna, M.; Mukhopadhyay, C., Cause and Effect of Melittin-Induced Pore Formation: A Computational Approach. Langmuir 2009, 25 (20), 12235-12242.
141. Rozek, A.; Friedrich, C. L.; Hancock, R. E. W., Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 2000, 39 (51), 15765-15774.
142. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14 (1), 33-38.
143. MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102 (18), 3586-3616.
144. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926-935.
145. Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K., NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151 (1), 283-312.
146. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103 (11), 4613.
147. Steinbach, P. J.; Brooks, B. R., New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. J. Comput. Chem. 1994, 15 (7), 667-683.
148. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 1977, 23 (3), 327-341.
149. Norbert Kučerka; Tristram-Nagle, S.; Nagle, a. J. F., Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. J. Membrane. Biol. 2005, 208, 193-202.
150. Elmore, D. E., Molecular dynamics simulation of a phosphatidylglycerol membrane. Febs Lett 2006, 580 (1), 144-148.
151. Subbalakshmi, C.; Krishnakumari, V.; Sitaram, N.; Nagaraj, R., Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. J Bioscience. 1998, 23 (1), 9-13.
152. Huang, H. W., Molecular mechanism of antimicrobial peptides: The origin of cooperativity. BBA-Biomembranes 2006, 1758 (9), 1292-1302.
153. Lee, M.-T.; Hung, W.-C.; Chen, F.-Y.; Huang, H. W., Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc. Natl. Acad. Sci. 2008, 105 (13), 5087-5092.
154. Mecke, A.; Lee, D. K.; Ramamoorthy, A.; Orr, B. G.; Holl, M. M. B., Membrane thinning due to antimicrobial peptide binding: An atomic force microscopy study of MSI-78 in lipid bilayers. Biophys. J. 2005, 89 (6), 4043-4050.
155. Jang, H.; Ma, B.; Woolf, T. B.; Nussinov, R., Interaction of protegrin-1 with lipid bilayers: Membrane thinning effect. Biophys. J. 2006, 91 (8), 2848-2859.
156. Jing, W.; Hunter, H. N.; Hagel, J.; Vogel, H. J., The structure of the antimicrobial peptide Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipid bilayers. J. Pept. Res. 2003, 61 (5), 219-229.
157. Kang, J. H.; Shin, S. Y.; Jang, S. Y.; Kim, K. L.; Hahm, E. S., Effects of tryptophan residues of porcine myeloid antibacterial peptide PMAP-23 on antibiotic activity. Biochem. Biophys. Res. Commun. 1999, 264 (1), 281-286.
158. Schibli, D. J.; Nguyen, L. T.; Kernaghan, S. D.; Rekdal, O.; Vogel, H. J., Structure-Function Analysis of Tritrpticin Analogs: Potential Relationships between Antimicrobial Activities, Model Membrane Interactions, and Their Micelle-Bound NMR Structures. Biophys. J. 2006, 91 (12), 4413-4426.
159. This peptide has same MIC as parent IL. The MIC for IL is 0.4 mM.
160. Khandelia, H.; Ipsen, J. H.; Mouritsen, O. G., The impact of peptides on lipid membranes. BBA-Biomembranes 2008, 1778 (7-8), 1528-1536.
161. Muino, P. L.; Callis, P. R., Solvent Effects on the Fluorescence Quenching of Tryptophan by Amides via Electron Transfer. Experimental and Computational Studies. J. Phys. Chem. B 2009, 113 (9), 2572-2577.
162. Mattila, J. P.; Sabatini, K.; Kinnunen, P. K., Oxidized phospholipids as potential molecular targets for antimicrobial peptides. Biochim Biophys Acta 2008, 1778 (10), 2041-50.
163. Yang, S. T.; Shin, S. Y.; Kim, Y. C.; Kim, Y. M.; Hahm, K. S.; Kim, J. I., Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Bioph Res Co 2002, 296 (5), 1044-1050.
164. Papo, N.; Shai, Y., Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 2003, 24 (11), 1693-1703.
165. Kim, S.-M.; Kim, J.-M.; Joshi, B. P.; Cho, H.; Lee, K.-H., Indolicidin-derived antimicrobial peptide analogs with greater bacterial selectivity and requirements for antibacterial and hemolytic activities. BBA-Proteins Proteomics 2009, 1794 (2), 185-192.
166. Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni, M. L.; Barra, D., Temporins, Antimicrobial Peptides from the European Red Frog. Europ. J. Biochemistry 1996, 242 (3), 788-792.
167. Dai, L.; Yasuda, A.; Naoki, H.; Corzo, G.; Andriantsiferana, M.; Nakajima, T., IsCT, a Novel Cytotoxic Linear Peptide from Scorpion Opisthacanthus madagascariensis. Biochem. Bioph. Res. Co. 2001, 286 (4), 820-825.
168. Yu, K.; Kim, Y.; Kang, S.; Park, N.; Shin, J., Relationship between the tertiary structures of mastoparan B and its analogs and their lytic activities studied by NMR spectroscopy. J. Pept. Res. 2000, 55 (1), 51-62.
169. G Mignogna, M. S., G Kreil, and D Barra, Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J. 1993, 12 (12), 4829–4832.
170. Toshiyuki Miyata, F. T., Takashi Yoneya, Katsuhiro Yoshikawa, Sadaaki Iwanaga, Makoto Niwa, Toshifumi Takao, Yasutsugu Shimonishi, Antimicrobial Peptides, Isolated from Horseshoe Crab Hemocytes, Tachyplesin II, and Polyphemusins I and II: Chemical Structures and Biological Activity. J. Biochem. 1989 106 (4), 663-668.
171. Mandard, N.; Bulet, P.; Caille, A.; Daffre, S.; Vovelle, F., The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur. J. Biochem. 2002, 269 (4), 1190-1198.
172. Fahrner RL, D. T., Harwig SS, Lehrer RI, Eisenberg D, Feigon J., Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem. Biol. 1996, 3 (7), 543-550.
173. Laederach, A.; Andreotti, A. H.; Fulton, D. B., Solution and Micelle-Bound Structures of Tachyplesin I and Its Active Aromatic Linear Derivatives Biochemistry 2002, 41 (41), 12359-12368.
174. Tang, Y.-Q.; Yuan, J.; Ouml; sapay, G.; sapay, K.; Tran, D.; Miller, C. J.; Ouellette, A. J.; Selsted, M. E., A Cyclic Antimicrobial Peptide Produced in Primate Leukocytes by the Ligation of Two Truncated -Defensins. Science 1999, 286 (5439), 498-502.
175. Yin A, M. H., Grogan J, Yao Y, Troxler RF, Oppenheim FG., Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral. Biol. 2003 48 (5), 361-368.
176. Chernysh, S.; Kim, S. I.; Bekker, G.; Pleskach, V. A.; Filatova, N. A.; Anikin, V. B.; Platonov, V. G.; Bulet, P., Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (20), 12628-12632.
177. Lai, R.; Liu, H.; Lee, W. H.; Zhang, Y., A novel proline rich bombesin-related peptide (PR-bombesin) from toad Bombina maxima. Peptides 2002, 23 (3), 437-442.
178. Halverson, T.; Basir, Y. J.; Knoop, F. C.; Conlon, J. M., Purification and characterization of antimicrobial peptides from the skin of the North American green frog Rana clamitans[small star, filled]. Peptides 2000, 21 (4), 469-476.
179. Romeo, D.; Skerlavaj, B.; Bolognesi, M.; Gennaro, R., Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 1988, 263 (20), 9573-9575.
180. Kim, S. S.; Shim, M. S.; Chung, J.; Lim, D.-Y.; Lee, B. J., Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii. Peptides 2007, 28 (8), 1532-1539.
181. Simmaco, M.; Mignogna, G.; Barra, D., Antimicrobial peptides from amphibian skin: What do they tell us? Peptide Science 1998, 47 (6), 435-450.
|