參考文獻 |
1. Diamond, R.E.W.H.a.G., The role of cationic antimicrobial peptides in innate host defences. TRENDS IN MICROBIOLOGY, 2000. 8(9): p. 402-410.
2. Yechiel Shai , Z.O., From “carpet” mechanism to de-novo designed diastereomeric cellselective antimicrobial peptidesPeptides, 2001. 22(2001): p. 1629–1641.
3. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by K-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta. 1462(1999): p. 55-70.
4. Revital Halevy , A.R., Sofiya Kolusheva , Robert E.W. Hancock , Raz Jelinek, Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides, 2003. 24(2003): p. 1753–1761.
5. Rozek, A., Friedrich, C. L., and Hancock, R. E. W., Structure of the Bovine Antimicrobial Peptide Indolicidin Bound to Dodecylphosphocholine and Sodium Dodecyl Sulfate Micelles. Biochemistry, 2000. 39(51): p. 15765-15774.
6. Schluesener HJ, R.S., Melms A, Jung S., Leukocytic antimicrobial peptides kill autoimmune T cells. Journal of neuroimmunology, 1993. 47.
7. Giacometti, A., Cirioni, O., Greganti, G. et al, In Vitro Activities of Membrane-Active Peptides against Gram-Positive and Gram-Negative Aerobic Bacteria. Antimicrob. Agents Chemother, 1998. 42(12): p. 3320-3324.
8. Friedrich, C.L., Moyles, D., Beveridge, T. J. et al, Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria,” Antimicrob. Agents Chemother, 2000. 44(8): p. 2086-2092.
9. Falla, T.J., and Hancock, R. E., Improved activity of a synthetic indolicidin analog Antimicrob. Agents Chemother, 1997. 41(4): p. 771-775.
10. Subbalakshmi, C., Krishnakumari, V., Sitaram, N. et al, Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. J. Biosci, 1998. 23: p. 9-13.
11. Lee, D.G., Kim, H. K., Kim, S. A. et al, Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications, 2003. 305(2): p. 305-310.
12. Stephen B. Aley, M.Z., Michel Hetsko, Michel E. Selsted, and Frances D. Gillin,, Killing of Giardia lamblia by Cryptdins and Cationic Neutrophil Peptides. Infection and Immunity, 1994 62(12): p. 5397-5403.
13. Robinson, W.E., McDougall, B., Tran, D. et al., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol, 1998. 63( 1): p. 94-100.
14. Vanesa, C.A.M., and Viviana, C., Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. International journal of antimicrobial agents, 2004. 23( 4): p. 382-389.
15. Falla, T.J., Karunaratne, D. N., and Hancock, R. E. W, Mode of Action of the Antimicrobial Peptide Indolicidin. J. Biol. Chem, 1996. 271(32): p. 19298-19303.
16. Manhong Wu, E.M., Roland Benz, Robert E. W. Hancock, Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 1999. 38(22): p. 7235-7242.
17. Yang Sung-Tae, S.S.Y., K.-S. H. et al., Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. International journal of antimicrobial agents, 2006. 27(4): p. 325-330.
18. Zhang, L., Rozek, A., and Hancock, R. E. W., Interaction of Cationic Antimicrobial Peptides with Model Membranes. J. Biol. Chem, 2001. 276(38): p. 35714-35722.
19. Yau, W.-M., Wimley, W. C., Gawrisch, K. et al., The Preference of Tryptophan for Membrane Interfaces. Biochemistry, 1998. 37(42): p. 14713-14718.
20. Schibli, D.J., Epand, R. F., Vogel, H. J. et al., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochemistry and Cell Biology, 2002. 80: p. 667-677.
21. Zhao, H., Mattila, J.-P., Holopainen, J. M. et al., Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin. Biophysical Journal, 2001. 81(5): p. 2979-2991.
22. Chilukuri Subbalakshmi, N.S., Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters, 1998. 160(1): p. 91-96.
23. Hsu, C.-H., Chen, C., Jou, M.-L. et al., Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucl. Acids Res, 2005. 33(13): p. 4053-4064.
24. Shaw, J.E., Alattia, J.-R., Verity, J. E. et al., Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of Structural Biology, 2006. 154(1): p. 42-58.
25. Hsu, J.C.Y., and Yip, C. M., Molecular Dynamics Simulations of Indolicidin Association with Model Lipid Bilayers. Biophys. J, 2007 92(12): p. 100-102.
26. Ahmad, I., Perkins, W. R., Lupan, D. M. et al., Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochimica et Biophysica Acta (BBA)- Biomembranes, 1995. 1237(2): p. 109-114.
27. Subbalakshmi, C., Krishnakumari, V., Nagaraj, R. et al., Requirements forantibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Letters, 1996. 395(1): p. 48-52.
28. Subbalakshmi, C., Bikshapathy, E., Sitaram, N. et al., Antibacterial and Hemolytic Activities of Single Tryptophan Analogs of Indolicidin. Biochemical and Biophysical Research Communications, 2000. 274(3): p. 714-716.
29. Papo, N., and Shai, Y., Exploring Peptide Membrane Interaction Using Surface Plasmon Resonance: Differentiation between Pore Formation versus Membrane Disruption by Lytic Peptides. Biochemistry, 2003. 42(2): p. 458-466.
30. Mechler, A., Praporski, S., Atmuri, K. et al., Specific and Selective Peptide-Membrane Interactions Revealed Using Quartz Crystal Microbalance. Biophysical Journal, 2007. 93(11): p. 3907-3916.
31. Adam A. Strömstedt , L.R., Artur Schmidtchen , Martin Malmsten Interaction between amphiphilic peptides and phospholipid membranes. Current Opinion in Colloid & Interface Science, 2010(12).
32. Ana Lu´ cia C.F. Souto, E.F.P., Clo´ vis R. Nakaie, Shirley Schreier,, Fluorescence and circular dichroism study of the interaction between indolicidin, a tryptophan-rich antimicrobial peptide, and model membranes. Progr Colloid Polym Sci, 2004. 128.
33. Royer, C.A., Probing Protein Folding and Conformational Transitions with Fluorescence. Chemical Reviews, 2006. 106(5): p. 1769-1784.
34. Caputo, G.A., and London, E., Using a Novel Dual Fluorescence Quenching Assay for Measurement of Tryptophan Depth within Lipid Bilayers To Determine Hydrophobic α-Helix Locations within Membranes. Biochemistry, 2003. 42(11): p. 3265-3274.
35. L. Miccoli. Szczepaniak, D., Savonni~re, .Muller, C. Carr6, and a.M. Donner, Interaction of a Phosphatidylcholine Derivative of 1,6- Diphenyl-l,3,5-hexatriene (DPH) with Intact Living Cells: Steady-State Fluorescence Polarization and Phase Fluorometry Studies Journal of Fluorescence, 1993. 3(4).
36. M. Mun˜oz , N.R.I.H.V.G.C.M.M.A.B., Fluorescence analysis of the interaction of two peptide sequences of hepatitis GB virus C with liposomes. Talanta, 2003. 60.
37. Seelig, J., Titration calorimetry of lipid–peptide interactions. Biochimica et Biophysica Acta, 1997. 1331.
|