參考文獻 |
1. Robertson, D.L.; Joyce, G.F., Selection in Vitro of an RNA Enzyme that Specifically Cleaves Single-stranded DNA. Nature (London) 1990, 344(6265), 467–468.
2. Tuerk, C.; Gold, L., Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase. Science 1990, 249 (4968), 505-510.
3. Ellington, A.D.; Szostak, J.W., In Vitro Selection of RNA Molecules that Bind Specific Ligands. Nature (London) 1990, 346(6287), 818–822.
4. Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J., Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin. Nature 1992, 355 (6360), 564-566.
5. Tsiang, M.; Gibbs, C. S.; Griffin, L. C.; Dunn, K. E.; Leung, L. L. K., Selection of a Suppressor Mutation That Restores Affinity of an Oligonucleotide Inhibitor for Thrombin Using in-Vitro Genetics. Journal of Biological Chemistry 1995, 270 (33), 19370-19376.
6. Rando, R. F.; Ojwang, J.; Elbaggari, A.; Reyes, G. R.; Tinder, R.; Mcgrath, M. S.; Hogan, M. E., Suppression of Human-Immunodeficiency-Virus Type-1 Activity in-Vitro by Oligonucleotides Which Form Intramolecular Tetrads. Journal of Biological Chemistry 1995, 270 (4), 1754-1760.
7. Lin, C. H.; Patel, D. J., Encapsulating an amino acid in a DNA fold. Nature Structural Biology 1996, 3 (12), 1046-1050.
8. Breaker, R. R., Natural and engineered nucleic acids as tools to explore biology. Nature 2004, 432 (7019), 838-845.
9. Osborne, S. E.; Ellington, A. D., Nucleic acid selection and the challenge of combinatorial chemistry. Chemical Reviews 1997, 97 (2), 349-370.
10. Gopinath, S. C. B.; Misono, T. S.; Kawasaki, K.; Mizuno, T.; Imai, M.; Odagiri, T.; Kumar, P. K. R., An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. Journal of General Virology 2006, 87, 479-487.
11. Sekiya, S.; Noda, K.; Nishikawa, F.; Yokoyama, T.; Kumar, P. K. R.; Nishikawa, S., Characterization and application of a novel RNA aptamer against the mouse prion protein. Journal of Biochemistry 2006, 139 (3), 383-390.
12. Nishikawa, F.; Funaji, K.; Fukuda, K.; Nishikawa, S., In vitro selection of RNA aptamers against the HCVNS3 helicase domain. Oligonucleotides 2004, 14 (2), 114-129.
13. Ciesiolka, J.; Gorski, J.; Yarus, M., Selection of an Rna Domain That Binds Zn2+. Rna 1995, 1 (5), 538-550.
14. Nieuwlandt, D.; Wecker, M.; Gold, L., In-Vitro Selection of Rna Ligands to Substance-P. Biochemistry 1995, 34 (16), 5651-5659.
15. Khati, M.; Schuman, M.; Ibrahim, J.; Sattentau, Q.; Gordon, S.; James, W., Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2 ' F-RNA aptamers. Journal of Virology 2003, 77 (23), 12692-12698.
16. Pileur, F.; Andreola, M. L.; Dausse, E.; Michel, J.; Moreau, S.; Yamada, H.; Gaidamakov, S. A.; Crouch, R. J.; Toulme, J. J.; Cazenave, C., Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res 2003, 31 (19), 5776-5788.
17. Misono, T. S.; Kumar, P. K. R., Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 2005, 342 (2), 312-317.
18. Mendonsa, S. D.; Bowser, M. T., In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. Journal of the American Chemical Society 2005, 127 (26), 9382-9383.
19. Mendonsa, S. D.; Bowser, M. T., In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry 2004, 76 (18), 5387-5392.
20. Drabovich, A.; Berezovski, M.; Krylov, S. N., Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). Journal of the American Chemical Society 2005, 127 (32), 11224-11225.
21. Berezovski, M. V.; Musheev, M. U.; Drabovich, A. P.; Jitkova, J. V.; Krylov, S. N., Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nature Protocols 2006, 1 (3), 1359-1369.
22. Blank, M.; Weinschenk, T.; Priemer, M.; Schluesener, H., Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels - Selective targeting of endothelial regulatory protein pigpen. Journal of Biological Chemistry 2001, 276 (19), 16464-16468.
23. Yang, X. B.; Li, X.; Prow, T. W.; Reece, L. M.; Bassett, S. E.; Luxon, B. A.; Herzog, N. K.; Aronson, J.; Shope, R. E.; Leary, J. F.; Gorenstein, D. G., Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Res 2003, 31 (10), e54.
24. Bunka, D. H. J.; Stockley, P. G., Aptamers come of age - at last. Nature Reviews Microbiology 2006, 4 (8), 588-596.
25. Cox, J. C.; Ellington, A. D., Automated selection of anti-protein aptamers. Bioorgan Med Chem 2001, 9 (10), 2525-2531.
26. Bock, C.; Coleman, M.; Collins, B.; Davis, J.; Foulds, G.; Gold, L.; Greef, C.; Heil, J.; Heilig, J. S.; Hicke, B.; Hurst, M. N.; Husar, G. M.; Miller, D.; Ostroff, R.; Petach, H.; Schneider, D.; Vant-Hull, B.; Waugh, S.; Weiss, A.; Wilcox, S. K.; Zichi, D., Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 2004, 4 (3), 609-618.
27. Eulberg, D.; Buchner, K.; Maasch, C.; Klussmann, S., Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 2005, 33 (4), e45.
28. Marshall, K. A.; Ellington, A. D., In vitro selection of RNA aptamers. Rna-Ligand Interactions, Part B 2000, 318, 193-214.
29. Eaton, B. E.; Pieken, W. A., Ribonucleosides and Rna. Annual Review of Biochemistry 1995, 64, 837-863.
30. Balamurugan, S.; Obubuafo, A.; Soper, S. A.; McCarley, R. L.; Spivak, D. A., Designing highly specific biosensing surfaces using aptamer monolayers on gold. Langmuir 2006, 22 (14), 6446-6453.
31. Ostatna, V.; Vaisocherova, H.; Homola, J.; Hianik, T., Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Analytical and Bioanalytical Chemistry 2008, 391 (5), 1861-1869.
32. Tang, Q. J.; Su, X. D.; Loh, K. P., Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. Journal of Colloid and Interface Science 2007, 315 (1), 99-106.
33. Liss, M.; Petersen, B.; Wolf, H.; Prohaska, E., An aptamer-based quartz crystal protein biosensor. Analytical Chemistry 2002, 74 (17), 4488-4495.
34. Hianik, T.; Ostatna, V.; Sonlajtnerova, M.; Grman, I., Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007, 70 (1), 127-133.
35. Huizenga, D. E.; Szostak, J. W., A DNA Aptamer That Binds Adenosine and Atp. Biochemistry 1995, 34 (2), 656-665.
36. Ravelet, C.; Grosset, C.; Peyrin, E., Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J Chromatogr A 2006, 1117 (1), 1-10.
37. Romig, T. S.; Bell, C.; Drolet, D. W., Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1999, 731 (2), 275-284.
38. Connor, A. C.; McGown, L. B., Aptamer stationary phase for protein capture in affinity capillary chromatography. J Chromatogr A 2006, 1111 (2), 115-119.
39. Deng, Q.; German, I.; Buchanan, D.; Kennedy, R. T., Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Analytical Chemistry 2001, 73 (22), 5415-5421.
40. Vo, T. U.; McGown, L. B., Effects of G-quartet DNA stationary phase destabilization on fibrinogen peptide resolution in capillary electrochromatography. Electrophoresis 2006, 27 (4), 749-756.
41. Michaud, M.; Jourdan, E.; Villet, A.; Ravel, A.; Grosset, C.; Peyrin, E., A DNA aptamer as a new target-specific chiral selector for HPLC. Journal of the American Chemical Society 2003, 125 (28), 8672-8679.
42. Ruta, J.; Ravelet, C.; Grosset, C.; Fize, J.; Ravel, A.; Villet, A.; Peyrin, E., Enantiomeric separation using an L-RNA aptamer as chiral additive in partial-filling capillary electrophoresis. Analytical Chemistry 2006, 78 (9), 3032-3039.
43. Pich, E. M.; Epping-Jordan, M. P., Transgenic mice in drug dependence research. Annals of Medicine 1998, 30 (4), 390-396.
44. Blank, M.; Blind, M., Aptamers as tools for target validation. Curr Opin Chem Biol 2005, 9 (4), 336-342.
45. Pendergrast, P. S.; Marsh, H. N.; Grate, D.; Healy J. M.; Stanton, M., Nucleic acid aptamers for target validation and therapeutic applications. Journal of Biomolecular Techniques 2005,16(3), 224-34.
46. Lee, J. F.; Stovall, G. M.; Ellington, A. D., Aptamer therapeutics advance. Curr Opin Chem Biol 2006, 10 (3), 282-289.
47. Floege, J.; Ostendorf, T.; Janssen, U.; Burg, M.; Radeke, H. H.; Vargeese, C.; Gill, S. C.; Green, L. S.; Janjic, N., Novel approach to specific growth factor inhibition in vivo - Antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. American Journal of Pathology 1999, 154 (1), 169-179.
48. Nelson, J. S.; Giver, L.; Ellington, A. D.; Letsinger, R. L., Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1. Biochemistry 1996, 35 (16), 5339-5344
49. Pavlov, V.; Xiao, Y.; Shlyahovsky, B.; Willner, I., Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society 2004, 126 (38), 11768-11769.
50. Huang, C. C.; Huang, Y. F.; Cao, Z. H.; Tan, W. H.; Chang, H. T., Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry 2005, 77 (17), 5735-5741.
51. Polsky, R.; Gill, R.; Kaganovsky, L.; Willner, I., Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry 2006, 78 (7), 2268-2271.
52. Gill, R.; Polsky, R.; Willner, I., Pt Nanoparticles Functionalized with Nucleic Acid Act as Catalytic Labels for the Chemiluminescent Detection of DNA and Proteins. Small 2 2006, 8(9),1037-1041.
53. Dwarakanath, S.; Bruno, J. G.; Shastry, A.; Phillips, T.; John, A.; Kumar, A.; Stephenson, L. D., Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Bioph Res Co 2004, 325 (3), 739-743.
54. Levy, M.; Cater, S. F.; Ellington, A. D., Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 2005, 6 (12), 2163-2166.
55. So, H. M.; Park, D. W.; Jeon, E. K.; Kim, Y. H.; Kim, B. S.; Lee, C. K.; Choi, S. Y.; Kim, S. C.; Chang, H.; Lee, J. O., Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 2008, 4 (2), 197-201.
56. Liu, J. W.; Lu, Y., Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie-International Edition 2006, 45 (1), 90-94.
57. Liu, J. W.; Mazumdar, D.; Lu, Y., A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures". Angewandte Chemie-International Edition 2006, 45 (47), 7955-7959.
58. Wang, J. L.; Zhou, H. S., Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Analytical Chemistry 2008, 80 (18), 7174-7178.
59. Macaya, R. F.; Schultze, P.; Smith, F. W.; Roe, J. A.; Feigon, J., Thrombin-Binding DNA Aptamer Forms a Unimolecular Quadruplex Structure in Solution. P Natl Acad Sci USA 1993, 90 (8), 3745-3749.
60. Feigon, J.; Dieckmann, T.; Smith, F. W., Aptamer structures from A to zeta. Chem Biol 1996, 3 (8), 611-617.
61. Wyatt, J. R.; Vickers, T. A.; Roberson, J. L.; Buckheit, R. W.; Klimkait, T.; Debaets, E.; Davis, P. W.; Rayner, B.; Imbach, J. L.; Ecker, D. J., Combinatorially Selected Guanosine-Quartet Structure Is a Potent Inhibitor of Human-Immunodeficiency-Virus Envelope-Mediated Cell-Fusion. P Natl Acad Sci USA 1994, 91 (4), 1356-1360.
62. Nagatoishi, S.; Tanaka, Y.; Tsumoto, K., Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem Bioph Res Co 2007, 352 (3), 812-817.
63. Jayapal, P.; Mayer, G.; Heckel, A.; Wennmohs, F., Structure-activity relationships of a caged thrombin binding DNA aptamer: Insight gained from molecular dynamics simulation studies. Journal of Structural Biology 2009, 166 (3), 241-250.
64. Tasset, D. M.; Kubik, M. F.; Steiner, W., Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology 1997, 272 (5), 688-698.
65. Salvagnini, C., Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials. The doctoral dissertation 2005.
66. Hu, J.; Zheng, P. C.; Jiang, J. H.; Shen, G. L.; Yu, R. Q.; Liu, G. K., Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry 2009, 81 (1), 87-93.
67. Di Cera, E., Thrombin as procoagulant and anticoagulant. Journal of Thrombosis and Haemostasis 2007, 5 (s1), 196-202.
68. Esmon, C. T., The protein C pathway. Chest 2003, 124 (3), 26s-32s.
69. Bichler, J.; Heit, J. A.; Owen, W. G., Detection of thrombin in human blood by ex-vivo hirudin. Thrombosis Research 1996, 84 (4), 289-294.
70. Bode, W., Structure and interaction modes of thrombin. Blood Cells Molecules and Diseases 2006, 36 (2), 122-130.
71. Huntington, J. A., Molecular recognition mechanisms of thrombin. Journal of Thrombosis and Haemostasis 2005, 3 (8), 1861-1872.
72. Bode, W.; Turk, D.; Karshikov, A., The Refined 1.9-Angstrom X-Ray Crystal-Structure of D-Phe-Pro-Arg Chloromethylketone-Inhibited Human Alpha-Thrombin - Structure-Analysis, Overall Structure, Electrostatic Properties, Detailed Active-Site Geometry, and Structure-Function-Relationships. Protein Science 1992, 1 (4), 426-471.
73. Gopinath, S. C. B., Methods developed for SELEX. Analytical and Bioanalytical Chemistry 2007, 387 (1), 171-182.
74. Morgan, H.; Taylor, D. M., A Surface-Plasmon Resonance Immunosensor Based on the Streptavidin Biotin Complex. Biosensors & Bioelectronics 1992, 7 (6), 405-410.
75. Boozer, C.; Ladd, J.; Chen, S. F.; Jiang, S. T., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry 2006, 78 (5), 1515-1519.
76. Ladd, J.; Boozer, C.; Yu, Q. M.; Chen, S. F.; Homola, J.; Jiang, S., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir 2004, 20 (19), 8090-8095.
77. Myszka, D. G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in Biotechnology 1997, 8 (1), 50-57.
78. Myszka, D. G.; Jonsen, M. D.; Graves, B. J., Equilibrium analysis of high affinity interactions using BIACORE. Anal Biochem 1998, 265 (2), 326-330.
79. Velluz, L.; Legrand, M.; Grosjean, M., Optical circular dichroism. Academic Press, Inc., 1965.
80. Kankia, B. I.; Marky, L. A., Folding of the thrombin aptamer into a G-quadruplex with Sr2+: Stability, heat, and hydration. Journal of the American Chemical Society 2001, 123 (44), 10799-10804.
81. Olsen, C. M.; Lee, H. T.; Marky, L. A., Unfolding Thermodynamics of Intramolecular G-Quadruplexes: Base Sequence Contributions of the Loops. J Phys Chem B 2009, 113 (9), 2587-2595.
82. Pagano, B.; Martino, L.; Randazzo, A.; Giancola, C., Stability and binding properties of a modified thrombin binding aptamer. Biophys J 2008, 94 (2), 562-569.
83. Hamaguchi, N.; Ellington, A.; Stanton, M., Aptamer beacons for the direct detection of proteins. Anal Biochem 2001, 294 (2), 126-131.
84. Cho, E. J.; Collett, J. R.; Szafranska, A. E.; Ellington, A. D., Optimization of aptamer microarray technology for multiple protein targets. Analytica Chimica Acta 2006, 564 (1), 82-90.
85. Lao, Y. H.; Peck, K.; Chen, L. C., Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect. Analytical Chemistry 2009, 81 (5), 1747-1754.
86. Bozza, M.; Sheardy, R. D.; Dilone, E.; Scypinski, S.; Galazka, M., Characterization of the secondary structure and stability of an RNA aptamer that binds vascular endothelial growth factor. Biochemistry 2006, 45 (24), 7639-7643.
87. McDonald, R. J.; Dragan, A. I.; Kirk, W. R.; Neff, K. L.; Privalov, P. L.; Maher, L. J., DNA bending by charged peptides: Electrophoretic and spectroscopic analyses. Biochemistry 2007, 46 (9), 2306-2316.
88. Johnson, W. C., Determination of the conformation of nucleic acid by electronic CD. In Circular Dichroism and the Conformational Analysis of Biomolecules 1996, p 433.
89. Ratmeyer, L.; Vinayak, R.; Zhong, Y. Y.; Zon, G.; Wilson, W. D., Sequence-Specific Thermodynamic and Structural-Properties for DNA-Center-Dot-Rna Duplexes. Biochemistry 1994, 33 (17), 5298-5304.
90. Lin, P. H.; Yen, S. L.; Lin, M. S.; Chang, Y.; Louis, S. R.; Higuchi, A.; Chen, W. Y., Microcalorimetrics studies of the thermodynamics and binding mechanism between L-tyrosinamide and aptamer. J Phys Chem B 2008, 112 (21), 6665-6673.
91. De Filippis, V.; De Dea, E.; Lucatello, F.; Frasson, R., Effect of Na+ binding on the conformation, stability and molecular recognition properties of thrombin. Biochem J 2005, 390, 485-492.
92. Mao, X. A.; Marky, L. A.; Gmeiner, W. H., NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+. J Biomol Struct Dyn 2004, 22 (1), 25-33.
93. Mondragon-Sanchez, J. A.; Liquier, J.; Shafer, R. H.; Thillandier, E., Tetraplex structure formation in the thrombin-binding DNA aptamer by metal cations measured by vibrational spectroscopy. J Biomol Struct Dyn 2004, 22 (3), 365-373.
94. Su, X. D.; Wu, Y. J.; Robelek, R.; Knoll, W., Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 2005, 21 (1), 348-353.
95. Jung, L. S.; Nelson, K. E.; Stayton, P. S.; Campbell, C. T., Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir 2000, 16 (24), 9421-9432.
96. Hook, F.; Ray, A.; Norden, B.; Kasemo, B., Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 2001, 17 (26), 8305-8312.
97. Su, X. D., Covalent DNA immobilization on polymer-shielded silver-coated quartz crystal microbalance using photobiotin-based UV irradiation. Biochem Bioph Res Co 2002, 290 (3), 962-966.
98. Skladal, P., Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. Journal of the Brazilian Chemical Society 2003, 14 (4), 491-502.
99. Su, X. D.; Lin, C. Y.; O'Shea, S. J.; Teh, H. F.; Peh, W. Y. X.; Thomsen, J. S., Combinational application of surface plasmon resonance spectroscopy and quartz crystal microbalance for studying nuclear hormone receptor-response element interactions. Analytical Chemistry 2006, 78 (15), 5552-5558.
100. Boyer, M.; Poujol, N.; Margeat, E.; Royer, C. A., Quantitative characterization of the interaction between purified human estrogen receptor alpha and DNA using fluorescence anisotropy. Nucleic Acids Res 2000, 28 (13), 2494-2502.
101. Margeat, E.; Bourdoncle, A.; Margueron, R.; Poujol, N.; Cavailles, V.; Royer, C., Ligands differentially modulate the protein interactions of the human estrogen receptors alpha and beta. Journal of Molecular Biology 2003, 326 (1), 77-92.
102. Hianik, T.; Ostatna, V.; Zajacova, Z.; Stoikova, E.; Evtugyn, G., Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorganic & Medicinal Chemistry Letters 2005, 15 (2), 291-295.
103. Buff, M. C. R.; Schafer, F.; Wulffen, B.; Muller, J.; Potzsch, B.; Heckel, A.; Mayer, G., Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Res 2010, 38 (6), 2111-2118.
|