博碩士論文 973209004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.141.2.191
姓名 陳冠璁(Kuan-Tsung Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
(Surfactants Effect on CdSe and ZnCdSe Alloyed Nanocrystals in High Temperature Organometallic Synthesis Procedure)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半導體奈米粒子因其發光波長寬廣且具有高量子效率,而引起廣泛地研究與討論。近幾年來,大多數研究半導體奈米粒子的論文主要在探討經由控制不同尺寸大小或是不同組成成分來控制奈米粒子的發光顏色。然而,很少有文章是藉由控制表面活性劑來使其產生不同光色。
在本研究中,高品質的CdSe 和ZnCdSe 奈米粒子可經由高溫有機金屬製程來製備(320 oC)。十六胺(HDA)和三正辛基氧膦(TOPO)則被用為表面活性劑,而表面活性劑的比例在製備過程中對奈米粒子所造成的影響將在本論文中闡述。所製備CdSe和ZnCdSe奈米粒子的組成、結構尺寸大小及光學性質分別以感應耦合電漿原子發射光譜分析儀(ICP-AES)、X光繞射分析儀(XRD)、高解析穿透式電子顯微鏡(HRTEM)、紫外光可見光吸收光譜儀(UV-vis)、螢光光譜儀(FL)做系統性的分析。CdSe和ZnCdSe量子效率的變化也將會做比較。
在不同比例的表面活性劑下製備的CdSe和ZnCdSe奈米粒子,具有相似的閃鋅礦結構,其元素組成比例分別是CdSec和Zn0.20Cd0.80Se。當HDA的量從0增加到75 wt %時,CdSe和ZnCdSe的尺寸分別從5.6到4.6 nm和6.3到4.9 nm。UV-vis和FL光譜儀則呈現出與HRTEM照片相同的趨勢,即顯示出當奈米粒子的尺寸減小時,其FL會有明顯的藍移現象。對CdSe和ZnCdSe而言,其放射波長的變化分別從552到514和620到525 nm。另一方面,當CdSe和ZnCdSe奈米粒子在只有HDA而沒有TOPO的環境下合成時,則因為金屬鹽類在高溫中會不穩定,其尺寸變化分別為5.3和5.1 nm。而CdSe和ZnCdSe奈米粒子的放射波長則分別為548和538 nm,此意謂著奈米粒子有紅移現象。
在量子效率方面,當HDA量從0增加到100 wt % ,CdSe和ZnCdSe奈米粒子的量子效率分別從3到46 %和<1到43 %。此外,FL光譜的半高寬大小則分別從36到24 nm和37到24 nm。根據上述的結果,可以得知CdSe和ZnCdSe奈米粒子可藉由改變HDA和TOPO的比例來控制其有不同的放射波長。除此之外,HDA是一個較佳的表面活性劑,它可使CdSe和ZnCdSe奈米粒子具有較高的量子效率和較窄的尺寸分佈。
摘要(英) Semiconductor nanocrystals (NCs) are a very active research field because of their wide emission wavelength and high quantum yields (QYs). In recent years, most studies of semiconductor NCs have focused on the preparation of different color-emitting NCs by changing particle sizes or constituent stoichiometries. However, few attentions have been paid to investigate the preparation of various color-emitting NCs through surfactant control.
In this study, high quality CdSe and ZnCdSe NCs have been successfully synthesized by the high temperature organometallic procedure (320 oC). Hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) are used as surfactants, and the effect of surfactant ratios on the physical properties of NCs has been also elucidated. The elemental compositions, crystal structures, particle sizes, and optical properties of CdSe and ZnCdSe NCs are systematically investigated by inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), UV-visible absorption spectroscopy (UV-vis), and Fluorescence spectroscopy (FL), respectively. The QYs of various CdSe and ZnCdSe NCs are also compared.
The obtained CdSe and ZnCdSe NCs synthesized with different surfactant ratios all have zinc blende cubic structures and their elemental composition is about CdSe and Zn0.20Cd0.80Se, respectively. When the amount of HDA increases from 0 to 75 wt %, the particle size of CdSe and ZnCdSe NCs decreases from 5.6 to 4.6 nm, and 6.3 to 4.9 nm, respectively. UV-vis and FL spectra display the same tendency as HRTEM results, suggesting that as the particle size decreases, the FL of NCs have a blue shift obviously. For CdSe and ZnCdSe NCs, the emission wavelength changes from 552 to 514 nm, and 620 to 525 nm, respectively. On the other hand, when CdSe and ZnCdSe NCs are synthesized with sole HDA without TOPO, the size of CdSe and ZnCdSe NCs are 5.3 and 5.1 nm, respectively, and this increase in particle size is due to the instability of metal salts in high temperature. The emission wavelength of CdSe and ZnCdSe NCs are 548 and 538 nm, respectively, implying a red –shift is noted in the FL spectra.
In terms of QY, with the amount of HDA increases from 0 to 100 wt %, the QY of CdSe and ZnCdSe NCs increases from 3 to 46 % and <1 to 43 %, respectively. In addition, the FL fwhm of CdSe and ZnCdSe NCs is noted from 36 to 24 nm and 37 to 24 nm, respectively. As a result, CdSe and ZnCdSe NCs with various emission wavelengths and QYs can be prepared by changing the surfactant ratios of HDA and TOPO. Besides, HDA is a good surfactant to prepare CdSe and ZnCdSe NCs with high QYs and narrow size distribution.
關鍵字(中) ★ 十六胺
★ 三正辛基氧膦
★ 高溫有機金屬製程
★ 奈米粒子
★ 硒化鋅鎘
★ 硒化鎘
關鍵字(英) ★ high temperature organometallic procedure.
★ TOPO
★ nanocrystals
★ HDA
★ ZnCdSe
★ CdSe
論文目次 摘要 i
Abstract iii
致謝 v
Table of Contents vi
List of Figures ix
List of Tables xiii
Chapter I Introduction 1
1. Nanomaterials 1
2. Surface Energy Effect 2
3. Quantum Confinement Effect 4
4. Preparation of Nanomaterials 8
5. Applications of Semiconductor NCs 10
5.1 Solar cells 10
5.2 Sensors 11
5.3 Biomedical applications 11
5.4 Light emitting diode (LED) 11
Chapter ΙΙ Literature Review 14
1. Semiconductor Nanomaterials 14
1.1 Types of semiconductor 14
1.2 Characteristics of semiconductor nanomaterials 15
1.3 Fluorescence mechanisms of semiconductor nanomaterials 19
2. CdSe NCs 22
2.1 Synthesis of CdSe NCs 22
2.2 Nucleation and growth mechanism of CdSe NCs 28
2.3 Factors influencing the QY of CdSe NCs 33
3. Ternary alloyed ZnCdSe NCs 39
3.1 Origin of the ternary ZnCdSe alloyed NCs 39
3.2 Synthesis of ternary alloyed ZnCdSe NCs 40
4. Motivation and Approach 45
Chapter ІІІ Experimental Procedure 46
1. Chemicals and Materials 46
2. Synthesis of NCs 48
2.1 Synthesis of CdSe 48
2.2 Synthesis of ZnCdSe 51
3. Characterization of NCs 54
3.1 Transmission electron microscopy (TEM) 54
3.2 X-ray diffraction (XRD) 54
3.3 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) 56
3.4 UV-visible absorption spectroscopy (UV-vis) 56
3.5 Fluorescence (FL) 56
3.6 Quantum yield (QY) 56
Chapter IV Results and Discussion 58
1. CdSe NCs 58
1.1 XRD analysis of CdSe NCs 58
1.2 TEM observation of CdSe NCs 60
1.3 UV-vis absorption and FL spectroscopy of CdSe NCs 60
1.4 Quantum yield of CdSe NCs 67
1.5 Summary 72
2. ZnCdSe NCs 73
2.1 ICP result 73
2.2 XRD analysis of ZnCdSe NCs 73
2.3 TEM observation of ZnCdSe NCs 76
2.4 UV-vis absorption and FL spectroscopy of ZnCdSe NCs 76
2.5 Quantum yield of ZnCdSe NCs 82
2.6 Summary 85
Chapter V Conclusions 87
References 89
參考文獻 [1] W. L. Wilson, P. F. Szajowdki, L. E. Brus, Science 262 (1993) 1242.
[2] B. Delley, E. F. Steigmeier, Phys. Rev. B 47 (1993) 1397.
[3] A. P. Alivisatos, Science 271 (1996) 933.
[4] S. A. Ding, M. Ikeda, M. Fukuda, S. Miyazaki, M. Hirose, Appl. Phys. Lett. 73 (1998) 3881.
[5] M. F. Crommie, C. P. Lutz, D. M. Eigler, Science 262 (1993) 218.
[6] H. C. Manoharan, C. P. Lutz , D. M. Eigler, Nature 403 (2000) 512.
[7] G. A. Fiete, E. J. Heller, Rev. Mod. Phys. 75 (2003) 933.
[8] V. F. Mukhanov, G. V. Chibisov, JETP Lett. 33 (1981) 533.
[9] C. W. J. Beenakker, Phys. Rev. B 44 (1991) 1646.
[10] F. Bødker, S. Mørup, S. Linderoth, Phys. Rev. Lett. 72 (1994) 282.
[11] D. A. Dimitrov, G. M. Wysin, Phys. Rev. B 51 (1995) 947.
[12] D. J. Lockwood, A. G. Wang, Solid State Commun. 94 (1995) 905.
[13] T. Takagahara, K. Takeda, Phys. Rev. B 46 (1992) 578.
[14] P. P. Edwards, R. L. Johnston, C. N. R. Rao, “Metal clusters in chemistry”, Wiley-VCH, Weinheim 1998.
[15] C. N. R. Rao, P. J. Thomas, G. U. Kulkarni, “Nanocrystals: Synthesis, Properties, and Applications”, Springer-Verlag Berlin Heidelberg 2007.
[16] U. Starke, J. Schardt, J. Bernhardt, M. Franke, K. Reuter, H. Wedler, K. Heinz, Phys. Rev. Lett. 80 (1998) 758.
[17] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science 256 (1992) 1425.
[18] K. J. Klabunde. “Nanoscale Materials In Chemistry”, John Wiley & Sons, Inc. 2001.
[19]C. N. R. Rao, G .U. Kulkarni, P. J. Thomas, P. P. Edwards, Chem. Eur. J. 8 (2002) 29.
[20] I. Kang, F. W. Wise, J. Opt. Soc. Am. B 14 (1997) 1632.
[21] D. W. Bahnemann, C. Kormann, M. R. Hoffmann, J. Phys. Chem. 91 (1987) 3789.
[22] R. W. Siegel, E. Hu, M. C. Roco, “Nanostructure Science and Technology”, Kluwer Academic 1999.
[23] H. J. Fecht, E. Hellstern, Z. Fu, W. L. Johnson, Metall. Trans. A 21A (1990) 2333.
[24] C. A. Foss, Jr., G. L. Hornyak, J. A. Stockert, C. R. Martin, J. Phys. Chem. 98 (1994) 2963.
[25] S. Kasukabe, S. Yatsuya, R. Uyeda, Jpn. J. Appl. Phys. 13 (1974) 1714.
[26] T. Hayashi, T. Ohno, S. Yatsuya, R. Uyeda, Jpn. J. Appl. Phys. 16 (1977) 705.
[27] T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, C. Busseret, A. Souifi, G. Guillot, Appl. Surf. Sci. 164 (2000) 29.
[28] E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 394 (1998) 539.
[29] A. M. Morales, C. M. Lieber, Science 279 (1998) 208.
[30] X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 119 (1997) 7019.
[31] T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, J. Am. Chem. Soc. 127 (2005) 1216.
[32] I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, J. Am. Chem. Soc. 128 (2006) 2385.
[33] S.Günes, H. Neugebauer, N. S. Sariciftci, J. Roither, M. Kovalenko, G. Pillwein, W. Heiss, Adv. Funct. Mater. 16 (2006) 1095.
[34] L. J. Bie, X. N. Yan, J. Yin, Y. Q. Duan, Z. H. Yuan, Sensors and Actuators B 126 (2007) 604.
[35] A. Gurlo, M. Ivanovskaya, N. Bârsan, M. Schweizer-Berberich, U. Weimar, W. Göpel, A. Diéguez, Sensors and Actuators B 44 (1997) 327.
[36] F. Paul, D. Melville, S. Roath, D. C. Warhurst, IEEE Trans. Magn. Mag. 17 (1981) 2822.
[37] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 101 (1997) 9463.
[38] J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulović, M.G. Bawendi, Angew. Chem. Int. Ed. 43 (2004) 2154.
[39] S. Coe, W. K. Woo, M. Bawendi, V. Bulović, Nature 420 (2002) 800.
[40] W. D. Callister, Jr., “Materials Science and Engineering an Introduction 6th ”, John Wiley & Sons, Inc. 2003.
[41] L. E. Brus, J. Chem. Phys. 80 (1984) 4403.
[42] R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, J. Chem. Phys. 80 (1984) 4464.
[43]N. W. Ashcroft, N. D. Mermin, ”Solid State Physics, 1st ed.”, Saunders College, Florida 1976.
[44]A. S. Edelstein, R. C. Cammarata, “Nanomaterials: Synthesis, Properties and Applications”, Bristol, Institute of Physics Publishing, Philadelphia 1996.
[45] S. Sapra, D. D. Sarma, Phys. Rew. B 69 (2004) 125304.
[46] D. A. Skoog, F. J. Holler, D. M. West, “Fundamentals of Analytcal Chemistry, 2nd ed.” , Saunders College Publishong 1996.
[47] A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, L. E. Brus, J. Am. Chem. Soc. 112 (1990) 1327.
[48] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.
[49] S. H. Tolbert, A. P. Alivisatos, Science 265 (1994) 373.
[50] J. E. Bowen Katari, V. L. Colvin, A. P. Alivisatos, J. Phys. Chem. 98 (1994) 4109.
[51] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawnedi, J. Phys. Chem. B 101 (1997) 9463.
[52] X. Peng, J. Wickmham, A. P. Alivisatos, J. Am. Chem. Soc.120 (1998) 5343.
[53] X. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. V. Kadavanich, A. P. Alivisatos, Nature 404 (2000) 59.
[54] D. J. Norris, N. Yao, F. T. Charnock, T. A. kennedy, Nano Lett.1 (2001) 3.
[55] D.V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett. 1 (2001) 207.
[56] Z. A. Peng, X. Peng, J. Am. Chem. Soc. 123 (2001) 183.
[57] L. Qu, Z. A. Peng, X. Peng, Nano Lett. 1 (2001) 333.
[58] V. K . La Mer, R. Dinegar, J. Am. Chem. Soc. 72 (1950) 4847.
[59] C. B. Murray, C. R. Kagan,M. G. Bawendi, Annu. Rev. Mater. Sci. 30 (2000) 545.
[60] L. Qu, W. W. Yu, X. Peng, Nano Lett. 4 (2004) 465.
[61] J. Y. Zhang, X. Y. Wang, M. X., L. Qu, X. Peng, Appl. Phys. Lett. 81 (2002) 2076.
[62] L. Qu, X. Peng, J. Am. Chem. Soc. 124 (2002) 2049.
[63] M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100 (1996) 468.
[64] X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Nano Lett. 2 (2002) 781.
[65] X. Zhong, M. Han, Z. Dong, T. J. White,W. Knoll, J. Am. Chem. Soc. 125 (2003) 8589.
[66] X. Zhong, Z. Zhang, S. Liu, M. Han, W. Knoll, J. Phys. Chem. B 108 (2004) 15552.
[67] X. T. Zhang, Z. Liu, Q. Li, S. K. Hark, J. Phys. Chem. B 109 (2005) 17913.
[68] H. Lee, P. H. Holloway, H. Yang, L. Hardison, V. D. Kleiman, J. Chem. Phys. 125 (2006) 164711.
[69] Y. Zheng, Z. Yang, J. Y. Ying, Adv. Mater. 19 (2007) 1475.
[70] C. C. Shen, W. L. Tseng, Inorg. Chem. 48 (2009) 8689.
[71] X. Zhong, W. Knoll, Chem. Commun. (2005) 1158.
[72] Z. Zhang, X. Zhong, S. Liu, D. Li, M.Han, Angew. Chemm. Int. Ed., 44 (2005) 3466
[73] X. Zhong, Y. Feng, Y. Zhang, J. Phys. Chem. C 111(2007) 526.
[74] V. N. Soloviev, A. Eichhofer, D. Fenske, U. Banin, J. Am. Chem. Soc. 123 (2001) 2354.
[75] M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem. B 102 (1998) 3655.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2010-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明