參考文獻 |
[1]Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[2]Stambouli, A.B. and Traversa, E., Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renew. Sust. Energ. Rev. Vol. 6, pp. 433-455, 2002.
[3]方良吉等編著,2010年能源產業技術白皮書,第一版,經濟部能源局,台北市,民國九十九年。
[4]Huang, C.M., Shy, S.S. and Lee, C.H., On flow uniformity in various interconnects and its influence to cell performance of planar SOFC, J. Power Sources, Vol. 183, pp. 205-213, 2008.
[5]Huang, C.M. Shy, S.S., Huang, S.C. and Lee, C.H., Performance measurements of a single-cell stack using various designs of flow distributors for planar SOFC, ECS Transactions, Vol. 25, Issue 2, pp. 221-230, 2009.
[6]Huang, C.M., Shy, S.S., Li, H.H. and Lee, C.H., The impact of flow distributors on the performance of planar solid oxide fuel cell, J. Power Sources, Vol. 195, pp. 6280-6286, 2010
[7]黃家明,「平板式固態氧化物燃料電池流場板與陽極微結構之優化設計與實作測試」,國立中央大學,博士論文,民國九十九年。
[8]黃士峻,「平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應」,國立中央大學,碩士論文,民國九十八年。
[9]Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta, Vol. 45, pp. 2423–2435, 2000.
[10]Vielstich, W., Lamm, A. and Gasteiger, H. A., Handbook of fuel cells : fundamentals, technology, and applications, John Wiley and Sons Ltd., West Sussex, 2003
[11]Mogensen, M., Sammes, N. M. and Tompsett, G. A., Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, Vol. 129, pp. 63-94, 2000.
[12]Zhu, B., Yang, X.T., Xu, J., Zhu, Z.G., Ji, S.J., Sun, M.T. and Sun, J.C., Innovative low temperature SOFCs and advanced materials, J. Power Sources, Vol. 118, pp. 47–53, 2003.
[13]Kato, H., Kudo, T., Naito, H. and Yugami, H., Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC, Solid State Ionics, Vol. 159, pp. 217- 222, 2003.
[14]Shaula, A.L., Kharton, V.V., Waerenborgh, J.C., Rojas, D.P. and Marques, F.M.B. Oxygen ionic and electronic transport in apatite ceramics, J. Eur. Ceram. Soc., Vol. 25, pp. 2583-2586, 2005.
[15]Park, J. H. and Blumenthal, R. N., Electronic Transport in 8 Mole Percent Y2O3-ZrO2, J. Electrochem. Soc., Vol. 136, Issue 10, pp. 2867-2876, 1989.
[16]Singhal, S. C. and Kendall, K., High temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier Science, Kidlington, 2003
[17]Sun, C. and Stimming, U., Recent anode advances in solid oxide fuel cells, J. Power Sources, Vol. 171, pp. 247-260, 2007.
[18]Clemmer, R. M.C. and Corbin, S. F., The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications, Solid State Ionics, Vol. 180, pp. 721-730, 2009.
[19]Haanappel, V.A.C., Mertens, J., Rutenbeck, D., Tropartz, C., Herzhof, W., Sebold, D. and Tietz, F., Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs, J. Power Sources, Vol. 141, pp. 216-226, 2005.
[20]de Boer, B., Gonzalez, M., Bouwmeester, H.J.M. and Verweij, H., The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes, Solid State Ionics, Vol. 127, pp. 269-276, 2000.
[21]Mogensen, M., Jensen, K. V., Jørgensen, M. J. and Primdahl, S., Progress in understanding SOFC electrodes, Solid State Ionics, Vol. 150, pp. 123-129, 2002.
[22]Jeon, D. H., Nam, J. H. and Kim, C. J., Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model, J. Electrochem. Soc., Vol. 153, pp. A406-A417, 2006.
[23]Matus, Y. B., De Jonghe, L. C., Jacobson, C. P. and Visco, S. J., Metal-supported solid oxide fuel cell membranes for rapid thermal cycling, Solid State Ionics, Vol. 176, pp. 443-449, 2005.
[24]Panteix, P. J., Baco-Carles, V., Tailhades, Ph., Rieu, M., Lenormand, P., Ansart, F. and Fontaine, M. L., Elaboration of metallic compacts with high porosity for mechanical supports of SOFC, Solid State Sci., Vol. 11, pp. 444-450, 2009.
[25]Pyke, S. H., Howard, P. J. and Leah, R. T., Planar SOFC technology: stack design and development for lower cost and manufacturability, DTI Research Report, DTI/Pub-URN 02/1350, 2002.
[26]Haanappel, V. A. C. and Smith, M. J., A review of standardising SOFC measurement and quality assurance at FZJ, J. Power Sources, Vol. 171, pp. 169-178, 2007.
[27]Krishnan, V. V., McIntosh, S., Gorte, R. J. and Vohs, J. M., Measurement of electrode overpotentials for direct hydrocarbon conversion fuel cells, Solid State Ionics, Vol. 166, pp. 191-197, 2004.
[28]Lin, Y., Zhan, Z., Liu, J. and Barnett, S. A., Direct operation of solid oxide fuel cells with methane fuel, Solid State Ionics, Vol. 176, pp. 1827-1835, 2005.
[29]Aguilar, L., Zha, S., Cheng. Z., Winnick, J. and Liu, M., A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels, J. Power Sources, Vol. 135, pp. 17-24, 2004.
[30]Sasaki, K., Susuki, K., Iyoshi, A., Uchimura. M., Imamura, N., Kusaba, H., Teraoka, Y., Fuchino, H., Tsujimoto, K., Uchida, Y. and Jingo, N., H2S poisoning of solid oxide fuel cells, J. Electrochem. Soc., Vol. 153, Issue 11, pp. A2023-A2029, 2006.
[31]Taherparvar, H., Kilner, J. A., Baker, R. T. and Sahibzada, M., Effect of humidification at anode and cathode in proton-conducting SOFCs, Solid State Ionics, Vol. 162-163, pp. 297-303, 2003.
[32]Sakai, N., Yamaji, K., Horita, T., Xiong, Y. P., Kishimoto, H., Brito, M. E. and Yokokawa. H., Effect of water on electrochemical oxygen reduction at the interface between fluorite-type oxide-ion conductors and various types of electrodes, Solid State Ionics, Vol. 174, pp. 103-109, 2004.
[33]Xue, L. A., Barringer, E. A., Cable, T. L., Goettler, R. W. and Kneidel, K. E., SOFCo planar solid oxide fuel cell, Int. J. Appl. Ceram. Technol., Vol. 1, Issue 1, pp. 16-22, 2004.
[34]Liu, H. C., Lee, C. H., Shiu, Y. H., Lee, R. Y. and Yan, W. M., Performance simulation for an anode-supported SOFC using Star-CD code, J. Power Source, Vol. 167, pp. 406-412, 2007.
[35]Laurencin, J., Lefebvre-Joud, F. and Delette, G., Impact of cell design and operating conditions on the performances of SOFC fuelled with methane, J. Power Source, Vol. 177, pp. 355-368, 2008.
[36]Andreassi, L., Rubeo, G., Ubertini, S., Lunghi, P. and Bove, R., Experimental and numerical analysis of a radial flowsolid oxide fuel cell, Int. J. Hydrogen. Energ., Vol. 32, pp. 4559-4574, 2007.
[37]Bedogni, S., Campanari, S., Iora, P., Montelatici, L. and Silva, P., Experimental analysis and modeling for a circular-planar type IT-SOFC, J. Power Source, Vol. 171, pp. 617-625, 2007.
[38]Larrain, D., Van herle, J., Maréchal, F. and Favrat, D., Generalized model of planar SOFC repeat element for design optimization, J. Power Source, Vol. 131, pp. 304-312, 2004.
[39]Sulzer Hexis, Inc.; http://www.hexis.com/.
[40]Liu, S., Song, C. and Lin, Z., The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization, J. Power Sources, Vol. 183, pp. 214-225, 2008.
[41]Tanner, C. W. and Virkar, V., A simple model for interconnect design of planar solid oxide fuel cells, J. Power Sources, Vol. 113, pp. 44-56, 2003.
[42]Ferguson, J. R., Fiard, J. M. and Herbin, R., Three-dimensional numerical simulation for various geometries of solid oxide fuel cells, J. Power Sources, Vol. 58, pp. 109-122, 1996.
[43]Yakabe, H. and Sakurai, T., 3D simulation on the current path in planar SOFCs, Solid State Ionics, Vol. 174, pp. 295-302, 2004.
[44]Lin, Z., Stevenson, J. W. and Khaleel, M. A., The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs, J. Power Sources, Vol. 117, pp. 92-97, 2003.
[45]Li, P.W., Kotwal, A., Sepulveda, J.L., Loutfy, R.O. and Chang, S., An easy-to-approach and comprehensive model for planar type SOFCs, Int. J. Hydrogen. Energ., Vol. 34, pp. 6393-6406, 2009.
[46]Ji, Y., Yuan, K., Chung, J. N. and Chen, Y. C., Effects of transport scale on heat/mass transfer and performance optimization for solid oxide fuel cells, J. Power Sources, Vol. 161, pp. 380-391, 2006.
[47]Gazzarri, J.I. and Kesler, O., Short-stack modeling of degradation in solid oxide fuel cells: Part I. Contact degradation, J. Power Sources, Vol. 176, pp. 138-154, 2008.
[48]Huang, S. C., Huang, C. M. and Shy, S. S., Numerical and experimental studies on effects of various sizes of pin-type flow distributors to cell performance of a single planar SOFC stack, 16th Computational Fluid Dynamics in Forum, Yilan, Taiwan, 2009.
[49]Huang, Q.A., Hui, R., Wang, B. and Zhang, J., A review of AC impedance modeling and validation in SOFC diagnosis, Electrochem. Acta, Vol. 52, pp. 8144-8164, 2007.
[50]Kim, C.H., Pyun, S.L. and Kim, J.H., An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochem. Acta, Vol. 48, pp. 3455-3463, 2003.
[51]Jorcin, J.B., Orazem, M.E., Pébére, N. and Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy, Electrochem. Acta, Vol. 51, pp. 1473-1479, 2006.
[52]Leonide, A., Sonn, V., Weber, A. and Ivers-Tiffée, E., Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 155, pp. B36-B41, 2008.
[53]Zhou, X. -D., Pederson, L. R., Templeton, J. W. and Stevenson, J. W., Electrochemical performance and stability of the cathode for solid oxide fuel cells: I. Cross validation of polarization measurements by impedance spectroscopy and current-potential sweep, J. Electrochem. Soc., Vol. 157, Issue 2, pp. B220-B227, 2010.
[54]Barfod, R., Mogensen, M., Klemensø, T., Hagen, A., Liu, Y.L. and Hendriksen, P.V., Detialed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc., Vol. 154, pp. B371-B378, 2007.
[55]ThyssenKrupp VDM; http://www.thyssenkrupp-vdm-fareast.com/.
[56]Kumtek International Co., Ltd.; http://www.kumtek.com.tw/.
[57]Jørgensenz, M. J. and Mogensen, M., Impedance of solid oxide fuel cell LSM/YSZ composite cathodes, J. Electrochem. Soc., Vol. 148, Issue 5, pp. A433-A442, 2001.
[58]Primdahl, S. and Mogensen, M., Gas diffusion impedance in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., Vol. 146, Issue 8, pp. 2827-2833, 1999.
[59]Primdahl, S. and Mogensen, M., Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., Vol. 145, Issue 7, pp. 2431-2437, 1998.
|