博碩士論文 973203601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.146.65.212
姓名 蘇達希(Sutarsis Suta)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 球磨製備Mg23.5Ni+5wt% x 合金(x=C(Pd),Nb2O5,Y2O3)儲氫特性之研究
(Hydrogen storage properties of Mg23.5Ni+5wt% x alloys (x=C(Pd),Nb2O5,Y2O3) produced by mechanical milling)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗的研究目的為進一步提高Mg23.5Ni共晶合金的儲氫特性,並探討催化劑與球磨時間對合金儲氫性能之影響。
實驗時以傳統熔煉法製備Mg23.5Ni共晶合金,以XRD及EPMA等儀器對合金的金相及化學成份進行分析。结果顯示,以傳統熔煉法所製備的Mg23.5Ni共晶合金,在金相及化學成份結果上均與理論值接近。Mg23.5Ni+5 wt%x-catalysts(x=C(Pd),Nb2O5,Y2O3)合金利用高能量的SPEX 8000球磨機所合成,並討論球磨與催化劑(C(Pd),Nb2O5,Y2O3)對Mg23.5Ni共晶合金吸放氫特性之影響。研究中發現C(Pd)在Mg23.5Ni共晶合金吸放氫特性以及降低吸收焓之改善上比其他催化劑有更理想的效果。
合金顆粒尺寸减小能有效提高合金吸放氫速率,並降低Mg23.5Ni共晶合金的吸收焓。另外,結果亦顯示合金吸收焓降低與 Mg23.5Ni共晶合金吸氫速率提高有直接關係。
摘要(英) The objectives of this work are to further enhance the hydrogen properties of Mg-23.5Ni eutectic alloy, and to investigate the impact of catalysts and milling time on the hydrogen storage properties.
Mg23.5Ni eutectic alloy, as raw material, was produced by conventional melting. Phases and chemical compositions were evaluated by XRD and EPMA. The results show that the phases and chemical composition of as-prepared Mg23.5Ni is nearly the same with theoretical composition. Mg23.5Ni+5wt% x-catalysts (x= C(Pd), Nb2O5, Y2O3) alloys were synthesized by using high-energy SPEX 8000 shaker mill. The effects of mechanical milling and x-catalysts (x= C(Pd), Nb2O5, Y2O3) on the hydriding and dehydriding properties of Mg23.5Ni eutectic alloys are discussed. It was found that C(Pd) is more effective than the others catalysts in improving the hydriding-dehydriding properties of Mg23.5Ni eutectic alloy as well as decreasing the absorption enthalpy.
The decreasing of particle size leads to improving in the hydrogen absorption-desorption rate and is decreasing the absorption enthalpy of Mg23.5Ni eutectic alloy. It shows that the decreasing of absorption enthalpy has directly relation to increasing the hydrogen absorption rate of Mg23.5Ni eutectic alloy.
關鍵字(中) ★ 儲氫
★ 機械球磨
★ Mg23.5Ni共晶合金
★ C(Pd)
★ Nb2O5
★ Y2O3
關鍵字(英) ★ Y2O3
★ Nb2O5
★ C(Pd)
★ Mg23.5Ni eutectic alloy
★ mechanical milling
★ Hydrogen storage
論文目次 Table of Contents
Abstract (chinese) i
Abstract (English) ii
Acknowledgements iii
List of figures vi
List of tables ix
CHAPTER
1. INTRODUCTION 1
1.1 Hydrogen Storage System 1
1.2 The Metal Hydride Hydrogen Storage system 4
1.3 The Hydrogen Storage in Mg-23.5Ni eutectic 9
1.4 The roles of Catalysts (C, Pd, Ni, NbF5, Nb2O5) on the hydrogen storage properties of Mg-Based alloys 12
1.5 The roles of Mechanically modification on the hydrogen storage properties of Mg-Based alloys 17
1.6 Purpose of the Study 20
1.7 Scope of the study 20
2. EXPERIMETAL DESIGN 21
2.1 The production of Mg-23.5Ni eutectic 22
2.2 The mechanisms of addition catalyst into the Mg-23.5Ni eutectic 25
2.3 Physical and hydrogen storage properties analysis 26
2.3.1 Phase and structure 26
2.3.2 Morphology and particle size 26
2.3.3 Chemical composition 26
2.3.4 The hydriding-dehydriding characterization 27
3. RESULTS and DISCUSSION 28
3.1 Physical and hydrogen storage properties of as-cast Mg23.5Ni eutectic alloy 28
3.1.1 Structure and chemical composition 28
3.1.2 Hydrogenation and dehydrogenation properties of Mg-23.5Ni 29
3.2 Effects of mechanical milling on the hydrogen storage properties of Mg-23.5Ni eutectic alloy. 31
3.2.1 Structure 31
3.2.2 Hydrogenation and dehydrogenation properties of Mg23.5Ni and BM10-Mg23.5Ni 33
3.3 Hydrogen storage properties of Mg23.5Ni+5% X alloy system (x= C(Pd), Nb2O5, Y2O3) produced by Ball milling 35
3.3.1 Hydrogen storage properties 35
3.3.2 The hydrogen absorption enthalpy 39
3.4 Discussion 41
3.4.1 Effect of mechanical milling on hydrogen storage properties 41
3.4.1.1 Effect of mechanical milling on the hydriding-dehydriding rate and capacity 41
3.4.1.2 Effect of particle size on absorption enthalpy 42
3.4.2 Effect of x-catalysts on the hydrogen storage properties 43
3.4.2.1 Effect of x-catalysts on the hydriding-dehydriding storage capacity 43
3.4.2.2 Relation between Hydrogen absorption rate and absorption enthalpy 44
4. CONCLUSIONS 45
5. REFERENCES 46
參考文獻 [1]. U.S.Department of Energy, 2005 http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/freedomcar_targets_explanations.pdf
[2]. U. S. Department of Energy, 2009
http://www1.eere.energy.gov/hydrogenandfuelcells/storage/tech_status.html
[3]. U.S Multi-Year Research, Development and Demonstration Plan, 2009.
http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf
[4]. S.Billur, L.D. Farida, H. Michael, Metal hydride materials for solid hydrogen storageInternational, Journal of Hydrogen Energy 32 (2007);1121 – 1140
[5]. A. Zaluska, L. Zaluski, J.O. Stro¨m–Olsen, Nanocrystalline magnesium for hydrogen storage, J. Alloys and Compounds 288 (1999);217–225
[6]. Hironobu Fujii, Takayuki Ichikawa, Recent development on hydrogen storage materials composed of light elementsPhysica B 383;(2006);45–48
[7]. H.Reule, M.Hirscher, A.Weihardt, H.Kronmulle, Hydrogen desorption properties of mechanically alloyed MgH2 composite materials, J.Alloys and Compounds 305; (2000);246–252
[8]. Schlapbach, L. & Zuttel, Hydrogen-storage materials for mobile applications, A. Nature 414(2001); 353-358.
[9]. Zuttel, A, Hydrogen storage material, H2net seminar (University of Birmingham, Birmingham, 2004
[10]. Ritter, J.A Ebner, A. D,Wang, Implementing a hydrogen economic, Materials Today 6 ( 2003);18-23
[11]. J. Huot,G. Liang, S.Boily, A.Van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride, J. Alloys Compd. 293–295 (1999);495
[12]. Chang D.Y, Bong S.Y, Young S.N, Jong S.B, C.Today 120 (2007) 276–280
[13]. Myoung Y.S, et.al, Hydrogen-storage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatmen, J. of Hydrogen Energy, 33 ( 2008 )1711-1718
[14]. W.Oelerich, T.Klassen, R.Bormann, Nanocrystalline Mg-based hydrides for hydrogen storage, J. Alloys Comp. 2001, 315, p.237
[15]. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage Appl. Phys. A, 2001, 72 p. 157
[14]. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Hydrogen storage in mechanically milled Mg–LaNi and MgH –LaNi composites, J. Alloys comp. 2000,297, p.261
[17]. Holtz RL, Imam MA, Hydrogen storage characteristics of ballmilled magnesium–nickel and magnesium–iron alloysJ. Mater science, 1999;34;2655-63
[18]. Zaluski L, et al, Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi, J. Alloys Compound, 1995, 217;245-9
[19]. X.Yao, et.al, Effects of Carbon Nanotubes and Metal Catalysts on Hydrogen Storage in Magnesium Nanocomposites, J. Nanoscience and nanotechnology 6 (2006); 494-498
[20]. Barkhordarian G,Klassen T,Bormann R, Effect of Nb2O5 content on hydrogen reaction kinetics of Mg, J Alloys Compds 2006;407:249–55
[21]. Hamed Simchi, A. Kaflou, A.Simchi, Synergetic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying, Int. Journal of Hydrogen Energy 34;(2009);7724-7730.
[22]. M.Ismail, X.Zhao, X.B.Zu, S.X.Dou, Effects of NbF5 addition on the hydrogen storage properties of LiAlH4, Int. Journal of Hydrogen Energy 35;(2010);2361-2367
[23]. Hao Gu, Yunfeng Zhu, Liquan Li, Catalytic mechanism of Nb2O5 and NbF5 on the dehydriding property of Mg95Ni5 prepared by hydriding combustion synthesis and mechanical milling, Int. Journal of Hydrogen Energy 34;(2009);7707-7713
[24]. Guoxian L, Erde W, Shoushi F. Hydrogen absorption and desorption characteristics of mechanically milled Mg–35 wt% FeTi1.2 powders, J Alloys Compds 1995;223:111–4
[25]. Huot J, Liang G, Boily S, Neste AV, Schulz R, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride J Alloys Compds 1999;293– 295:495–500
[26]. Che-Wei.H, Sheng-Long Lee, Rong-Ruey.J, Jing-Chie.L, Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process, Int. Journal of Hydrogen Energy 32;(2007);4907 – 4911
[27]. Song MY, Park HR, Pressure–composition isotherms in the MgNi–H system, J Alloys Compds 1998;270:164
[28]. J.L. Bobet, E.Grigorova, et.al, Hydrogen sorption properties of graphite-modified magnesium nano composites prepared by ball-milling, J.of Alloys and Compounds 366 (2004) 298-302.
[29]. C.D. Yim, Y.M. Moon, B.S. You, Y.S. Na, J.S. Bae, Microstructural Change in Gravity Cast Mg-Ni Alloys with Ni Contents, Met. Mater. Int. 10 (2004) 605.
[30]. L. Zaluski, A. Zaluska, P. Tessier, J.O. Stro¨m-Olsen, R. Schulz, J. Alloy Comp. 217 (1995) 295.
[31]. Mildred Dresselhaus, Overview of the Hydrogen Initiative, APS MARCH 2006
[32]. C.S Sunandana, Nanomaterials for Hydrogen Storage, Resonance, 2007
[33]. Aep Pataha, Akito Takasakia, Janusz S. Szmydb Influence of multiple oxide (Cr2O3/Nb2O5) addition on thesorption kinetics of MgH2, J. intl of Hydrogen energy 34 (2009) 3032 – 3037
[34]. MyoungYoup Songa, SungNam Kwona, Jong-Soo Baeb, Seong-Hyeon Hongb,Hydrogen-storage properties of melt spun Mg–23.5 wt%Ni milled with nano Nb2O5, Journal of Alloys and Compounds 478 (2009) 501–506
指導教授 李勝(Sheng-Long Lee) 審核日期 2010-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明