博碩士論文 963303013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.217.144.32
姓名 徐志誠(Chih-cheng Hsu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 球閥使用不同特性擋板的流體控制及孔蝕問題探討
(Investigation of flow control and cavitations for ball valve using different shields)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 高解析熱氣泡式噴墨頭墨滴成形觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 管路系統中,控制閥為重要探討的議題之一,在管流操作過程中,若不當的選配控制閥,往往會產生孔蝕現象(cavitation),造成管路的噪音、振動及孔蝕腐蝕,進而降低管路系統效能。多年以來,工業界常使用球型閥(globe valve)來當作主要的控制閥,但因球型閥製造成本高及體積較為笨重,現在許多廠商已改用球閥(ball valve)來作流量控制,使得成本及重量也隨之降低。而球閥利用不同特性的擋板來控制流量,同時還可以利用電腦自動控制球閥的轉動角度,達到精確的控制流量。球閥使用不同特性擋板具有許多優點,例如最低的流阻、開關迅速及方便控制、密封性能好、使用壽命長、控制精確及可靠性高。
球閥常使用於要求精密流量控制但卻惡劣的環境下運作,其中遭遇的問題包括孔蝕腐蝕、噪音及震動。本文將利用計算流體力學軟體來進行數值模擬,計算出流量係數(flow coefficient, Kv),而流量係數是調節閥選型的主要參數之一,吾人可將數值預測的Kv與實驗數據比對,進而設計出較好的球閥。
本研究以FloEFD軟體模擬球閥在不同V形開口及客製化形狀開口中的流場的現象。研究重點放在孔口板、純球閥和球閥使用不同特性擋板的流場模擬,以決定最佳特性擋板造型,能抑止或消除孔蝕現象。數值模擬結果顯示孔口在下游產生收縮截面,造成流體加速,當流體壓力下降至絕對飽和蒸汽壓力時即形成孔蝕。當壓差愈小時,孔蝕指數也愈大,也不容易發生孔蝕現象;標準球閥(直徑38 mm及50 mm)的數值解顯示,開度愈小時球閥上下游的壓差增加,雷諾數愈大時對應的壓差愈大。開度愈大時流體流動較為平順,而產生渦流現象也隨之減小。在同樣的開度時,V Port的擋板角度愈小,使得下游縮流部流速愈快;此外對應的壓力也降低,此時較容易產生孔蝕現象及產生噪音。在不同管路直徑及不同的流速,選擇適當的球閥擋板,可以精確的控制流量及預防孔蝕現象的發生。
摘要(英) The control valve is one of the important issues in the piping system. When controlling the flow, if the control valve is not carefully selected, it would often lead to cavitations, causing noise in the pipe-work, vibration and erosions, and thus diminishing the efficiency of the system. Over the years, the industry often used globe valves as the main control valve. However, due to the high-cost of the globe valves and its bulky size, nowadays many factories have switched to the ball valve for flow controls, which lower the cost and the weight of their products. Ball valves use different shields to control the flow, and can be programmed with computer for the angle of turning angle, therefore accurately controlling the flow. The use of different shields holds many advantages, such as the minimum flow resistance, rapid responding time, easy to control, good sealing capability, longer life-span, accurate controllability, and high reliability.
Ball valves often operate to meet the requirement of high precision flow control yet in bad-condition environment, many issues are encountered, such as cavitation, noise and vibration problems. This study uses computational fluid dynamic software to simulate flow over the ball valve, and then calculate the flow coefficient, Kv. Flow coefficient is one of the main parameters for selecting the control valve, one can compare the computed Kv with the experiment, so as to design a better ball valve.
This study uses the software FloEFD to simulate the flow over the ball valves with different V-shaped openings, and other custom-made opening shapes. The focus of this study is to simulate orifice, pure ball valve, and ball valve with different shields, which allow one to find the best performing shield shapes which can suppress or eliminate cavitation. Simulation results show that the orifice creates contraction region in the downstream, thus accelerating the flow, and as the flow pressure lowers than the absolute saturated vapor pressure, cavitations will occur. The smaller pressure difference is, the higher cavitations index is, and cavitation is less likely to occur. Simulation of standard ball valves (38mm and 50mm in diameter) reveal that as the opening decreases, the pressure difference across the valve increases, and the pressure difference is increasing with increment of Reynolds number. When the opening is enlarged, the flow motion is smoother, creating a smaller vortex circulation. At the same opening, the smaller angle of the V-Port shield, the faster the flow at downstream. In addition, the corresponding pressure is lower, and the cavitations and noise are more likely to occur. Choosing appropriate ball valve shields with different pipe diameters and flow speeds can accurately control the flow motion and prevent cavitation.
關鍵字(中) ★ 孔口板
★ 球閥
★ 球型閥
★ 孔蝕
★ 流量係數
關鍵字(英) ★ Ball Valve
★ Globe Valve
★ Cavitation
★ Flow Coefficient
★ Orifice
論文目次 中文摘要 …………………………………………………………………………………I
ABSTRACT………………………………………………………………………………II
致謝………………………………………………………………………………………III
表目錄……………………………………………………………………………………VI
圖目錄……………………………………………………………………………………VII
符號說明…………………………………………………………………………………X
第一章 緒論………………………………………………………………………………1
1.1前言……………………………………………………………………………………1
1.2研究動機………………………………………………………………………………3
1.3研究方向………………………………………………………………………………3
1.4文獻回顧………………………………………………………………………………4
第二章 理論分析…………………………………………………………………………6
2.1孔蝕現象………………………………………………………………………………6
2.2振動與噪音影響………………………………………………………………………7
2.2.1噪音測試 ……………………………………………………………………………7
2.2.2噪音的防治 …………………………………………………………………………9
2.3控制閥管路設計方程式………………………………………………………………9
2.4孔蝕現象與球閥性能相關方程式……………………………………………………11
2.4.1孔蝕指數(cavitation index) …………………………………………………………11
2.4.2孔蝕影響控制閥的設計的因素 ……………………………………………………12
2.4.3產生窒流現象而發生孔蝕(ISA,1995)………………………………………………17
2.4.4孔蝕損害強度及閥的使用壽命(ISA,1995)…………………………………………17
2.4.5孔口流量計相關方程式 ……………………………………………………………18
2.4.5.1孔口板孔蝕指數 …………………………………………………………………20
2.4.6控制閥相關方程式 …………………………………………………………………23
2.4.6.1放流係數Cd ………………………………………………………………………23
2.4.6.2控制閥的流量係數(Kv, Cv) ………………………………………………………24
2.4.6.3流量係數Cv和Kv定義 …………………………………………………………25
第三章 數值模擬方法 ……………………………………………………………………26
3.1數值模擬簡介 …………………………………………………………………………26
3.2統御方程式與流場邊界條件 …………………………………………………………27
3.2.1統御方程式 …………………………………………………………………………27
3.2.2FloEFD的孔蝕現象的統御方程式 …………………………………………………29
3.3數值模擬軟體(FloEFD)介紹 ………………………………………………………30
3.4數值模擬步驟 …………………………………………………………………………32
3.4.1控制閥測試管路系統 ………………………………………………………………32
3.4.2FloEFD模擬設定及運算結果輸出 …………………………………………………33
第四章 數值模擬結果與討論 ……………………………………………………………34
4.1孔口板的數值模擬結果………………………………………………………………34
4.1.1標準孔口板的尺寸規範 ……………………………………………………………34
4.1.2FloEFD數值軟體可靠性確定………………………………………………………35
4.1.3孔口板五模組模擬結果與討論 ……………………………………………………36
4.2球閥數值模擬結果 ……………………………………………………………………44
4.2.1直徑38mm球閥數值模擬結果 ……………………………………………………44
4.2.2直徑50mm球閥數值模擬結果 ……………………………………………………50
4.3球閥使用不同特性擋板的數值模擬結果……………………………………………57
第五章 結論與建議………………………………………………………………………66
5.1結論……………………………………………………………………………………66
5.2未來建議………………………………………………………………………………67
參考文獻 …………………………………………………………………………………68
參考文獻 柯賢文。2006。腐蝕及其防制。第六版。台北:全華科技圖書。
高忠誠。2002。管路控制閥孔蝕問題之探討與研究。國立雲林科技大學碩士論文。雲林。
B.R. Munson, T.H. Okiishi, D.F. Young, 1994. Fundamentals of Fluid Mechanics, John Wiley & Sons.
B.C. Kim, B.C. Park, N.H. Cho., D.S. Chi., H.M. Choi., Y.M. Choi., K.A. Park, 1997. “Effect of cavitation and plate thickness on small diameter ratio orifice meter,” Flow Measurement and Instrumentation, vol. 8, no. 2, pp. 85-92.
Crane Co., 1988. “Flow of Fluids,” Technical paper 410, 24th Printing.
Fisher Controls International , 2005. Control Valve Handbook, 4nd Ed., pp136-146.
Flow-Tek, 2007. http://www.flow-tek.com.
FloEFD TechnicalReference, 2009. Mentor Graphics. http://www.mentor.com/products/mechanical/
F. R. Young, 1989. Cavitation, McGraw-Hill.
Habonim Industrial Valves, 2008. http://www.habonim.com/
ISA, 1995. “Considerations for evaluating control valve cavitation,” RP 75.23, pp. 9-58.
ISA, 1996. “Control valve Capacity Test Procedures,” S75.02.
ISA, 1997. “Laboratory measurement of aerodynamic noise generated by control valves,” 75.07, pp. 9-15.
ISO- 5167-2, 2003. “Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full- Part 2: Orifice plates,” British Standards Institution.
J.A. Davis, M. Stewart, 2002. “Predicting globe control valve performance—Part I: CFD modeling,” Journal of Fluids Engineering, vol. 124, pp. 772-777.
J.A. Davis, M. Stewart, 2002. “Predicting globe control valve performance—Part II: Experimental verification,” Journal of Fluids Engineering, vol. 124, pp. 778-783.
K. Ramamurthi, K. Nandakumar, 1999. “Characteristic of flow through small sharp edged cylindrical orifices,” Flow Measurement and Instrumentation, vol. 10, pp. 133-143.
R.W. Miller, 1997, Flow Measurement Engineering Handbook, 3rd Ed. New York: McGraw-Hill.
M.J. Chern, C.C. Wang, 2004. “Control of volumetric flow-rate of ball valve using V-port”, Journal of Fluids Engineering, vol. 126, pp. 471-481.
M.J. Chern, C.C. Wang, C.H. Ma, 2007. “Performance test and flow visualization of ball valve,” Experimental Thermal and Fluid Science, vol. 31, pp. 505-512.
R.W. Barnes, F.M.Cain, 1989, “Proposed universal method for qantifying the severity of a cavitation control valve service,” Second International Conference on Developments in Valves and Actuators for Fluid Control, BHRA, Manchester, England.
T. Kimura, T. Tanaka, K. Fujimoto, K. Ogawa, 1986, “Hydrodynamic caracteristics of a Butterfly Valve-Prediction of pressure loss characteristics,” Instrument Society of America Transactions, 34, pp. 319–326.
Tullis, J. P., 1989, Hydraulics of Pipelines-Pumps, Valve, Cavitation, Transients, John Wiley and Sons, New York.
Twin Process Filtration, 2009. http://www.sulphurnet.com/upload/Image/Jacketed%20Ball%20Valves%20Leaflet.pdf
Y.A. Cengel, J.M. Cimbala, 2006. Fluid Mechanics, McGraw-Hill.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2010-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明