參考文獻 |
[1] 台灣燃料電池資訊: 燃料電池介紹。取自http://www.tfci.org.tw /Fc/fc1-2.asp。
[2] 胡子龍編著,儲氫材料,曉園出版社,台北市,民國95年,pp.9-25。
[3] 毛宗強編著,張勝雄、管鴻、林矩民、王鴻猷編修,氫能 - 21世紀的綠色能源,新文京開發出版股份有限公司,台北縣,民國97年,pp.213-258。
[4] M. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems”, Int. J. Hydrogen Energy, Vol.33, 2008, pp.4013-4029.
[5] J.D. Holladay, J. Hu, D.L. King and Y. Wang, “An overview of hydrogen production technologies”, Catal. Today, Vol.139, 2009, pp.244-260.
[6] S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, “The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements”, Catal. Today, Vol.120, 2007, pp.246-256.
[7] P. Chen and M. Zhu, “Recent progress in hydrogen storage”, Mater. Today, Vol.11, 2008, pp.35-43.
[8] C.L. Aardahl and S.D. Rassat, “Overview of systems considerations for on-board chemical hydrogen storage”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.6676-6683.
[9] B. Sakintuna, F. Lamari-Darkrim and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.1121-1140.
[10] Z.X. Guo, C. Shang and K.F. Aguey-Zinsou, “Materials challenges for hydrogen storage”, J. Eur. Ceram. Soc., Vol.28, 2008, pp.1467-1473.
[11] G. Sandrock, “A panoramic overview of hydrogen storage alloys form a gas reaction point of view”, J. Alloys Compd., Vol.293-295, 1999, pp.877-888.
[12] R.K. Ahluwalia, T.Q. Hua and J.K. Peng, “Automotive storage of hydrogen in alane”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.7731-7740.
[13] D. Wenger, W. Polifke, E. Schmidt-Ihn, T. Abdel-Baset and S. Maus, “Comments on solid state hydrogen storage systems design for fuel cell vehicles”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.6265-6270.
[14] S. Mellouli, H. Dhaou, F. Askri, A. Jemni and S.B. Nasrallah, “Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.9393-9401.
[15] D. Mori and K. Hirose, “Recent challenges of hydrogen storage technologies for fuel cell vehicles”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.4569-4574.
[16] D. Mori, N. Kobayashi, T. Matsunaga, K. Toh and Y. Kojima, Materia Japan, Vol.44, 2005, pp.257-262.
[17] D. Mori, N. Kobayashi, T. Shionozawa, T. Matsunaga, H. Kubo and K. Toh et al., “Hydrogen storage materials for fuel cell vehicles high-pressure MH system”, Japan Inst Metals, Vol.69, 2005, pp.308-311.
[18] 漢氫科技股份有限公司: HB-SC-0660-N, 660 Liter Hydrogen Storage。取自http://www.hbank.com.tw/fc_products_pr_05.htm。
[19] U.S. Department of Energy (DOE) Office of Science Laboratory, “Basic research needs for the hydrogen economic”, pp.36-99, 2004.
[20] U.S. Department of Energy (DOE) Office of Science Laboratory, “Recommended beat practices for the characterization of storage properties of hydrogen storage materials”, pp.22-29, November 30, 2009.
[21] U.S. Department of Energy (DOE) Office of Science Laboratory, “FY 2009 Annual progress report - Hydrogen storage sub-program overview”, pp.391-395, November 30, 2009.
[22] U.S. Department of Energy (DOE) Office of Science Laboratory, “Go/no-go recommendation for sodium borohydride for on-board vehicular hydrogen storage”, pp.3-4, November, 2007.
[23] U.B. Demirci, O. Akdim and P. Miele, “Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.2638-2645.
[24] U.S. Department of Energy Office (DOE) of Science Laboratory, “Basic Research Needs for the Hydrogen Economic”, pp.36-99, 2004.
[25] L. Zaluski, A. Zaluska and J. O. Strom- Olsen, “Hydrogenation properties of complex alkali metal hydrides fabricated by mechano- chemical synthesis”, J Alloy. Compd., vol.290, 1999, pp.71-78.
[26] A.E. Finholt, A.C. Bond Jr. and H.I. Schlesinger, “Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry”, J. Am. Chem. Soc., Vol.69, 1947, pp.2692-2696.
[27] A.E. Finholt, G.D. Barbaras, G.K. Barbaras, G. Urry, T. Wartik and H.I. Schlesinger, “The preparation of sodium and calcium aluminum hydrides”, J. Inorg. Nucl. Chem., Vol.1, 1955, pp.317-325.
[28] A.F. Holleman, E. Wiberg, N. Wiberg, (2007). Lehrbuch der Anorganischen Chemie, 102nd ed., de Gruyter. ISBN 978-3-11-017770-1.
[29] L.I. Zakharkin and V.V. Gavrilenko, “A simple method for the preparation of sodium and potassium aluminium hydrides”, Bull. Acad Sci. USSR, Vol.10, 1961, pp.2246-2248.
[30] P. Claudy, B. Bonnetot, J.P. Bastide and J.M. Letoffe, ” Reactions of lithium and sodium aluminum hydride with sodium or lithium hydride. Preparation of a new alumino-hydride of lithium and sodium LiNa2AlH6”, Mater. Res. Bull., Vol.17, 1982, pp.1499-1505.
[31] J.S. Cha and H.C. Brown, “Reaction of sodium aluminum hydride with selected organic compounds containing representative functional groups. Comparison of the reducing characteristics of lithium and sodium aluminum hydrides”, J. Org. Chem., Vol.58, 1993, pp.4727-4733.
[32] G.E. Nelson, W.E. Becker and P. Kobetz, German Disclosure 1809264 (1969)
[33] T.N. Dymova, Yu.M. Dergachev, V.A. Sokolov and N.A. Grechanaya, Dokl. Akad. Nauk SSSR, Vol.224, 1975, pp.591-599.
[34] T.N. Dymova, N.G. Eliseeva, S.I. Bakum and Yu.M. Dergachev, Dokl. Akad. Nauk SSSR, Vol.215, 1974, pp.1369-1376.
[35] 張青蓮等著,無機化學叢書,第一卷,科學出版社,北京,民國71年,pp.22-23。
[36] T.N. Dymova, D.P. Aleksandrov, V.N. Konoplev, T.A. Silina and N.T. Kuznetzov, Russ. J. Coord. Chem., Vol.19, 1993, pp.607-614.
[37] J. Huot, S. Boily, V. Guther and R. Schulz, “Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying”, J Alloy. Compd., Vol.283, 1999, pp.304-306.
[38] A. Zaluska and L. Zaluski, “New catalytic complexes for metal hydride system“, J Alloy. Compd., Vol.404-406, 2005, pp.706-711.
[39] A. Zaluska, L. Zaluski and J. O. Ström-Olsen, “Lithium-beryllium hydrides: the lightest reversible metal hydrides”, J Alloy. Compd., Vol.307, 2000, pp.157-166.
[40] A. Zaluska, L. Zaluski and J.O. Ström-Olsen, “Sodium alanates for reversible hydrogen storage”, J Alloy. Compd., Vol.298, 2000, pp.125-134.
[41] L. Zaluski, A. Zaluska and J.O. Ström-Olsen, “Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis”, J Alloy. Compd., Vol.290, 1999, pp.71-78.
[42] S.S. Liu, L.X. Sun, Y. Zhang, F. Xu, J. Zhang, H.L. Chu, M.Q. Fan, T. Zhang, X.Y. Song and J.P. Grolier, “Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4”, Int J Hydrogen Energy, Vol.34, 2009, pp.8079-8085.
[43] V.P. Balema, J.W. Wiench, K.W. Dennis, M. Pruski and V.K. Pecharsky, “Titanium catalyzed solid-state transformation in LiAlH4 during high-energy ball-milling”, J Alloy. Compd., Vol.329, 2001, pp.108-114.
[44] J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita and T. Sakai, “Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6”, J Phys Chem B, Vol.105, 2001, pp.11214-11220.
[45] M. Resan, M.D. Hampton, J.K. Lomness and D.K. Slattery, “Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int J Hydrogen Energy, Vol.30, 2005, pp.1417-1421.
[46] M. Resan, M.D. Hampton, J.K. Lomness and D.K. Slattery, “Effect of various catalysts on hydrogen release and uptake characteristics of LiAlH4”, Int J Hydrogen Energy, Vol.30, 2005, pp.1413-1416.
[47] X.P. Zheng, X.H. Qu, I.S. Humail, P. Li and G.Q. Wang, “Effects of various catalysts and heating rates on hydrogen release from lithium alanate”, Int J Hydrogen Energy, Vol.32, 2007, pp.1141-1144.
[48] H.W. Brinks, A. Fossdal, J.E. Fonnelop and B.C. Hauback, “Crystal structure and stability of LiAlD4 with TiF3 additive”, J Alloy. Compd., Vol. 397, pp.291-295.
[49] V.P. Balema, K.W. Dennis and V.K. Pecharsky, “Rapid solid-state transformation of tetrahedral [AlH4]- into octahedral [AlH6]- in lithium aluminohydride”, Chem. Commun., Issue 17, 2000, pp.1665-1666.
[50] D.S. Easton, J.H. Schneibel and S.A. Speakman, “Factors affecting hydrogen release from lithium alanate (LiAlH4)”, J Alloy. Compd., Vol.398, 2005, pp.245-248.
[51] D. Blanchard, H.W. Brinks, B.C. Hauback and P. Norby, “Desorption of LiAlH4 with Ti- and V-based additives”, Mater Sci Eng B, Vol.108, 2004, pp.54-59.
[52] J.R. Ares, K.F. Aguey-Zinsou, M. Elsaesser, X.Z. Ma, M. Dornheim and T. Klassen et al., “Mechanical and thermal decomposition of LiAlH4 with metal halides”, Int J Hydrogen Energy, Vol.32, 2007, pp.1033-1040.
[53] X.P. Zheng, P. Li, I.S. Humail, F.Q. An, G.Q. Wang and X.H. Qu, “Effect of catalyst LaCl3 on hydrogen storage properties of lithium alanate (LiAlH4)”, Int J Hydrogen Energy, Vol.32, pp.4957-4960.
[54] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, N. Muangsin and S. Kulprathipanja, “Catalytic effect of Zr and Hf on hydrogen desorption/ absorption of NaAlH4 and LiAlH4”, Int J Hydrogen Energy, Vol.32, 2007, pp.1277-1285.
[55] A. Andreasen, “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride”, J Alloy. Compd., Vol.419, 2006, pp.40-44.
[56] L.H. Kumar, B. Viswanathan and S.S. Murthy, “Dehydriding behavior of LiAlH4 - the catalytic role of carbon nanofibres”, Int J Hydrogen Energy, Vol.33, 2008, pp.366-373.
[57] X. Zheng, P. Li and X. Qu, “Effect of additives on the reversibility of lithium alanate (LiAlH4)” Rare Metal Mat. Eng., Vol.38, 2009, pp.766-769.
[58] X. Zhang and S. Liu, “Effect of LaCl3 and Ti on hydrogen storage properties of NaAlH4 and LiAlH4”, Rare Metal Mat. Eng., Vol.38, 2009, pp.1328-1332.
[59] T. Sun, C.K. Huang, H. Wang, L.X. Sun and M. Zhu, “The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4”, Int J Hydrogen Energy, Vol.33, 2008, pp.6216-6221.
[60] M. Ismail, Y. Zhao, X.B. Yu and S.X. Dou, “Effect of NbF5 addition on the hydrogen storage properties of LiAlH4”, Int J Hydorgen Energy, Vol.35, 2010, pp.2361-2367.
[61] F. W. Dafert and R. Miklauz, “Über einige neue Verbindungen von Stickstoff und Wasserstoff mit Lithium“, Monatsh. Chem., Vol. 31, 1910, pp.981-987.
[62] P. Chen, Z. Xiong, J. Lin and K. L. Tan, “Interaction of hydrogen with metal nitrides and imides”, Nature, Vol. 420, 2002, pp.302-304.
[63] W. Luo, “(LiNH2–MgH2): a viable hydrogen storage system“, J Alloy. Compd., Vol. 381, 2004, pp.284-289.
[64] H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujji, “New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage”, J. Phys. Chem. B, Vol. 108, 2004, pp.8763-8769.
[65] Z. Xiong, G. Wu, J. Hu and P. Chen, “Ternary imides for hydrogen storage”, Adv. Mater., Vol. 16, 2004, pp.1522-1525.
[66] Y. Nakamori, G. Kitahara and S. Oriom, ”Synthesis and dehydriding studies of Mg–N–H systems”, J. Power Sour., Vol. 138, 2004, pp.309- 315.
[67] R. Janot, J.-B. Eymery and J.-M. Tarascon, ”Investigation of the processes for reversible hydrogen storage in the Li–Mg–N–H system”, J. Power Sour., Vol. 164, 2007, pp.496-502.
[68] R.R. Shahi, T.P. Yadav, M.A. Shaz and O.N. Srivastva, “Studies on dehydrogenation characteristic of Mg(NH2)2/LiH mixture admixed with vanadium and vanadium based catalysts (V, V2O5 and VCl3)”, Int. J. Hydrogen Energy, Vol.35, 2010, pp.238-246.
[69] J. Wang, H. Li, S. Wang, X. Liu, Y. Li and L. Jiang, “The desorption kinetics of the Mg(NH2)2 + LiH mixture”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.1411-1416.
[70] R.R. Shahi, T.P. Yadav, M.A. Shaz and O.N. Srivastava, “Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture”, Int. J. Hydrogen Energy, Vol.33, 2008, pp.6188-6194.
[71] T. Ichikawa, K. Tokoyoda, H. Leng and H. Fujii, “Hydrogen absorption properties of Li-Mg-N-H system”, J. Alloy. Compd., Vol. 400, 2005, pp.245-248.
[72] K. Okamoto, K. Tokoyoda, T. Ichikawa and H. Fujii, A process for synthesizing the Li-Mg-N-H hydrogen storage system from Mg and LiNH2, J. Alloy. Compd., Vol.432, 2007, pp.289-292.
[73] M. Aoki, T. Noritake, G. Kitahara, Y. Nakamori, S. Towata and S. Orimo, “Dehydriding reaction of Mg(NH2)2–LiH system under hydrogen pressure”, J. Alloy. Compd., Vol. 428, 2007, pp.307-311.
[74] Y. Liu, F. Wang, Y. Cao, M. Gao and H. Pan, Reversible hydrogenation/ dehydrogenation performances of the Na2LiAlH6- Mg(NH2)2 system, Int. J. Hydrogen Energy, 2010, doi:10.1016/j.ijhydene. 2009.12.005.
[75] J. Lu, Z. Z. Fang, Y. J. Choi and H. Y. Sohn, “Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications”, J. Phys. Chem. C, Vol.111, 2007, pp.12129-12134.
[76] J. Lu, Y.J. Choi, Z.Z. Fang and H.Y. Sohn, “Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2-MgH2 (1:1) mixture”, J. Power Sources, Vol.195, 2010, pp.1992-1997.
[77] W. Osborn, T. Markmaitree and L.L. Shaw, “Evaluation of the hydrogen storage behavior of a LiNH2+MgH2 system with 1:1 ratio”, J. Power Sources, Vol.172, 2007, pp.376-378.
[78] H. Yamane, T. Kano, A. Kamegawa, M. Shibata, T. Yamada, M. Okada and M. Shimada, “Reactivity of hydrogen and ternary nitrides containing lithium and 13 group elements”, J Alloy. Compd. Vol.420, 2005, pp.L1-L3.
[79] P. Chen, Z. Xiong, G. Wu, Y. Liu, J. Hu and W. Luo, “Metal-N-H systems for the hydrogen storage”, Scr. Mater., Vol.56, 2007, pp.817-822.
[80] Z. Xiong, G. Wu, J. Hu, Y. Liu, P. Chen, W. Luo and J. Wang, “Reversible hydrogen storage by a Li-Al-N-H complex”, Adv. Funct. Mater., Vol.17, 2007, pp.1137-1142.
[81] H.W. Langmi and G.S. McGrady, “Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems”, J Alloy. Compd., Vol.466, 2008, pp.287-292.
[82] H.W. Langmi, S.D. Culligan and G.S. McGrady, “Mixed-metal Li3N-based systems for hydrogen storage: Li3AlN2 and Li3FeN2”, Int J Hydrogen Energy, Vol.34, 2009, pp.8018-8114.
[83] K.N. Ishihara, F. Kubo, K. Irie, K. Shichi, E. Yamasue and H. Okumura, “Mechanical alloying of lithium-base systems”, J. Alloys Compd., Vol.434-435, 2007, pp.542-545.
[84] W. Ha, H.-S. Lee, J.-I. Youn, T.-W. Hong and Y.-J. Kim, “Hydrogenation and degradation of Mg–10 wt% Ni alloy after cyclic hydriding–dehydriding”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.1885-1889.
[85] C. D. Yim, B. S. You, Y. S. Na and J. S. Bae, “Hydriding properties of Mg–xNi alloys with different microstructures”, Catal. Today, Vol.120, 2007, pp.276-280.
[86] J.R. Davis, Davis and Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, 1993, p. 550.
[87] C.W. Hsu, S.L. Lee, R.R. Jeng and J.C. Lin, “Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.4907-4911.
[88] 梁基謝夫主編,郭青蔚等譯,化學工業出版社,北京,民國98年,p.98。
[89] 維基百科-鋰(Lithium)。取自http://zh.wikipedia.org/zh-tw/Li。
[90] C. Milanese, A. Girella, G. Bruni, V. Berbenni, P. Cofrancesco, A. Marini, M. Villa and P. Matteazzi, “Hydrogen storage in magnesium– metal mixtures: Reversibility, kinetic aspects and phase analysis”, J. Alloys Compd., Vol.465, 2008, pp.396-405.
[91] X.L.Wang, J.P. Tu, P.L. Zhang, X.B. Zhang, C.P. Chen and X.B. Zhao, “Hydrogenation properties of ball-milled MgH2-10wt.%Mg17Al12 composite”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.3406-3410.
[92] C.X. Shang, M. Bououdina1, Y. Song and Z.X. Guo, “Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage”, Int. J. Hydrogen Energy, Vol.29, 2004, pp.73-80.
[93] O. Palumbo, A. Paolone, R. Cantelli and D. Chandra, “Lithium nitride as hydrogen storage material”, Int. J. Hydrogen Energy, Vol.33, 2008, pp.3107-3110.
|