參考文獻 |
[1] 蘇漢儒:「半導體材料製程與研究」。2009年4月5日。取自http://www.scribd.com/doc/13981911/%E5%8D%8A%E5%B0%8E%E9%AB%94%E6%9D%90%E6%96%99%E8%A3%BD%E7%A8%8B%E8%88%87%E7%A0%94%E7%A9%B6。
[2] G. K. Teal and J. B. Little, “Growth of germanium single crystals”, Physical Review, vol. 78, pp. 647, 1950.
[3] 陳智勇,「柴氏生長鈮酸鋰塊晶之研究分析」,國立中央大學,碩士論文,民國93年。
[4] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka and T. Warabisako, “Suppression of light degradation of carrier lifetimes in low-resistivity CZ-Si solar cells“, Solar Energy Materials & Solar Cells, vol. 65, pp. 277-285, 2001.
[5] K. Hoshikawa and X. Huang, “Oxygen transportation during Czochralski silicon crystal growth“, Materials Science and Engineering, B72, pp. 73–79, 2000.
[6] T. Zhang, G. X. Wang, H. Zhang, F. Ladeinde and V. Prasad, “Turbulent transport of oxygen in the Czochralski growth of large silicon crystals“, Journal of Crystal Growth, Vol. 198-199, pp. 141-146, 1999.
[7] H. Matsuo, R. B. Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi and K. Kakimoto, “Thermodynamical analysis of oxygen incorporation from a quarz crucible during solidification of multicrystalline silicon for solar cell“, Journal of Crystal Growth, Vol. 310, pp. 4666-4671, 2008.
[8] A. D. Smirnov and V. V. Kalaev, “Development of oxygen transport model in Czochralski growth of silicon crystals“, Journal of Crystal Growth, Vol. 310, pp. 2970-2976, 2008.
[9] A. Muhe, R. Backofen, J. Fainberg, G. Muller, E. Dornberger, E. Tomzig and W. V. Ammon, “Oxygen distribution in silicon melt during a standard Czochralski process studied by sensor measurements and comparison to numerical simulation“, Journal of Crystal Growth, Vol. 198/199, pp. 409-413 , 1999.
[10] I. Kanda, T. Suzuki and K. Kojima, “Influence of crucible and crystal rotation on oxygen-concentration distribution in large-diameter silicon single crystals“, Journal of Crystal Growth, Vol. 166, pp. 669-674, 1996.
[11] Mi. Li, Y. Li, N. Imaishi and T. Tsukada, “Global simulation of a silicon Czochralski furnace“, Journal of Crystal Growth, Vol. 234, pp. 32-46, 2002.
[12] Y. Li, M. Li, Nobuyuki Imaishi, Yasunobu Akiyama and Takao Tsukada, “Oxygen-transport phenomena in a small silicon Czochralski furnace“, Journal of Crystal Growth, Vol. 267, pp. 466–474, 2004.
[13] N. Machida, Y. Suzuki, K. Abe, N. Ono, M. Kida and Y. Shimizu, “The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski-grown silicon crystals“, Journal of Crystal Growth, Vol. 186, pp. 362-368, 1998.
[14] N. Machida, K. Hoshikawa and Y. Shimizu, “The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski silicon single crystals grown in a transverse magnetic field“, Journal of Crystal Growth, Vol. 210, pp. 532-540, 2000.
[15] K. Izunome, X. Huang, S. Togawa, K. Terashima and S. Kimura, “Control of oxygen concentration in heavily antimony-doped Czochralski Si crystals by ambient argon pressure“, Journal of Crystal Growth, Vol. 151, pp. 291-294, 1995.
[16] K. Yi, K. Kakimoto, M. Eguchi and H. Noguchi, “Oxygen transport mechanism in Si melt during single crystal growth in the Czochralski system“, Journal of Crystal Growth, Vol. 165, pp. 358-361, 1996.
[17] Y. Li, Y. Akiyama, N. Imaishi and T. Tsukada, “Global analysis of a small Czochralski furnacewith rotating crystal and crucible“, Journal of Crystal Growth, Vol. 255, pp. 81–92, 2003.
[18] H. Matsuo, R. Ganesh, S. Nakano, L. Liu, K. Arafune, Y. Ohshita, M. Yamaguchi and K. Kakimoto, “Effect of crucible rotation on oxygen concentration during unidirectional solidification process of multicrystalline silicon for solar cells“, Journal of Crystal Growth, Vol. 311, pp. 1123-1128, 2009.
[19] J. Kim and T. Lee, “Numerical study of the melt-thermal e!ect on a silicon crystal in Czochralski growth system“, Journal of Crystal Growth, Vol. 209, pp. 55-67, 2000.
[20] J. Virbulis, T. Wetzel, E. Tomzig and W. V. Ammon, “Silicon melt convection in large size Czochralski crucibles“, Materials Science in Semiconductor Processing, Vol. 5, pp. 353–359, 2003.
[21] E. Dornberger, J. Virbulis, B. Hanna, R. Hoelzl, E. Daub and W. V. Ammon, “Silicon crystals for future requirements of 300mm wafers“, Journal of Crystal Growth, Vol. 229, pp. 11-16, 2001.
[22] W. V. Ammon, E. Dornberger, H. Oelkurg and H. Weidner, “The dependence of bulk defects on the axial temperature gradient of on crystals during Czochralski growth“, Journal of Crystal Growth, Vol. 151, pp. 273-277, 1995.
[23] R. A. Brown, Z. Wang and T. Mori, “Engineering analysis of microdefect formation during silicon crystal growth“, Journal of Crystal Growth, Vol. 225, pp. 97–109, 2001.
[24] T. Sinno and R. A. Brown, “Modeling microdefect formation in Czochralski
silicon“, Journal of Electrochemical Society, Vol. 146, pp. 2300-2312, 1999.
[25] T. Carlberg, “Calculated solubilities of oxygen in liquid and solid silicon“, Journal of Electrochemical Society, Vol. 133, No. 9, pages 1940-1942, 1986.
[26] V. V. Voronkov and R. Falster, “Grown-in microdefects, residual vacancies and
oxygen precipitation bands in Czochralski silicon“, Journal of Crystal Growth, Vol. 204, pp. 462-474, 1999.
[27] Y. Y. Teng, J. C. Chen, C. W. Lu and C. Y. Chen, “The carbon distribution in multicrystalline silicon ingots grown using the directional solidification process“, Journal of Crystal Growth, Vol. 312, pp. 1282-1290, 2010.
[28] 鄧應揚,「多晶矽太陽能電池晶碇固化生長之熱流場研究」,國立中央大學,博士班資格考計畫書,民國97年。
[29] Y. Y. Teng, J. C. Chen, C. W. Lu and C. Y. Chen, Numerical and experimental atudy for improving the concavity of the crystalline front in multicrystalline silicon ingots during the directional solidification process, solidification process, submit to Solar Energy Material & Solar Cells.
|