參考文獻 |
[1] H. Xiao原著,羅正忠,張鼎張譯,半導體製程技術導論修訂版,
台灣培生教育出版,pp.5-299,(2007).
[2] 莊達人,VLSI製造技術,高立圖書有限公司,pp.74-578(2004).
[3] 陳威良,電漿離子佈植製作SOI及佈植缺陷之研究,國立清華大
學材料科學工程學系碩士論文,(2001).
[4] http://www.certichip.com/
[5] 吳志宏 等,SOI晶圓之發展現況與應用,機械工業雜誌257期,
pp.93-101,(2004).
[6] 李天錫 等,晶圓鍵合技術及其應用,工業材料雜誌170期,
pp.146-157,(2001).
[7] 劉丙寅 等,晶圓異質接合機制探討及發展現況,機械工業雜誌
269期,pp.5-20,(2005).
[8] Q.-Y. Tong and U. Gösele, “Semiconductor Wafer Bonding:
Science and Technology”, Wiley, New York, (1999).
[9] S. S. Iyer and A. J. Auberton-Hervé, “Silicon Wafer Bonding
Technology for VLSI and MEMS”, INSPEC, London, UK, (2002).
[10] M. Alexe and U. Gösele, “Wafer Bonding Applications and
Technology”, Springer-Verlag, Berlin, (2004).
[11] Q.-Y. Tong and U. Gösele, “A model of low-temperature wafer
bonding and its applications”, Journal of the Electrochemical
Society 143, (5), pp.1773-1779 ,(1996).
[12] Bower R W, Ismail M S, Roberds B E. “Low temperature Si3N4
direct bonding”. Appl. Phys. Lett,12(6)2485~3487,(1993).
[13] U. Gösele et al, “Wafer Bonding for Microsystems Technologies”,
Sensors and Actuators 74, 161, ( 1999; SCI).
[14] G.L. Sun et al, “Cool plasma activated surface in silicon direct
bonding technology”, J. de Physique, 49(C4),79, (1988).
[15] D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced
damages in oxygen plasma in situ wafer bonding,” J. Electrochem.
Soc., vol.147, pp. 2699–2702, (2000).
[16] TaekRyong Chung, Naoe Hosoda, and Tadatomo Suga. “1.3 μm
InGaAsP/InP lasers on GaAs substrate fabricated by the surface
activated wafer bonding method at room temperature”, Appl. Phys.
Lett. 72, 1565 (1998).
[17] Q.-Y. Tong, W.J. Kim, T.-H. Lee, and U. Gösele, “Low Vacuum
Bonding”, Electrochemical and Solid-State Letters, 1 (1) 52-53,
(1998; SCI).
[18] Tien-His Lee, “Semiconductor thin film transfer by wafer bonding
and advanced ion implantation layer splitting technologies”, Duke
University, (1998).
[19] U. M. Gösele et al, “Self-propagating room-temperature silicon
wafer bonding in ultra high vacuum,” Appl. Phys. Lett., vol. 67,
p.3614, (1995).
[20] G. Wallis and D.I. Pomerantz, “Field Assisted Glass-Metal
Sealing”, J. Appl. Phys. 40, 3946 (1969).
[21] D. Sparks et al, “Wafer-to-wafer bonding of nonplanarized MEMS
surfaces using solder”, J. Micromech. Microeng., 11, 630,(2001).
[22] Y. T. Cheng, L. Lin, and K. Najafi, J. Microelectromech.
“Localized silicon fusion and eutectic bonding for MEMS
fabrication and packaging”, J. Microelectromech. Syst., 9, 3,
(2000).
[23] H. Morkoc et al,“Large-band-gap SiC, III-V nitride, and II-VI
ZnSe-based semiconductor device technologies”, J. Appl. Phys.,
76, 1363, (1994).
[24] P. D. Persans et al, “Siloxane-based polymer epoxies for optical
waveguides”, in Applications of Photonic Technology 6, ed. R.
Lessard and G. Lampropoulos, SPIE Vol. 5260, 331 (2003).
[25] F. Niklaus, “ Adhesive Wafer Bonding for Microelectronic and
Microelectromechanical Systems”, Ph.D. thesis, Royal Institute of
Technology, (2002).
[26] Y. Kwon, “Wafer Bonding for 3D Integration, Ph.D. thesis”,
Rensselaer Polytechnic Institute, (2003).
[27] G. Wallis and D.I. Pomerantz, “Field Assisted Glass-Metal
Sealing”, J.Appl. Phys., Vol 40, No. 10, pp. 3946-3949, (1969).
[28] H.J.Quenzer and W.Benecke. “Low-temperature silicon wafer
bonding”,Sens.Actuators,vol.A32,pp,340-344,(1992).
[29] T. Yonehara and K. Sakaguchi, “ELTRAN®; Novel SOI Wafer
Technology”, JSAP Int.No.4, (2001).
[30] Hitoshi Habuka, “Roughness of Silicon Surface Heated Hydrogen
Ambient”,J.Electrochem.Soc,Vol.142,No9,pp.3092-3097,(1995).
[31] M. Bruel, “Silicon on insulator material technology”. Electronics
Letters, Vol. 31, Issue 14, pp. 1201-1202, Jul ,(1995).
[32] C. P. Herrero and M. Stutzmann, “Microscopic structure of
boron-hydrogen complexes in crystalline silicon”, Phys. Rev. B 38,
p.12668 (1988).
[33] J. I. Pankove, “Temperature dependence of boron neutralization in
silicon by atomic hydrogen”, J. Appl. Phys. 68, p.6532 (1990).
[34] Tong, Q.-Y., Gosele, U., Martini, T. and Reiche, M.,“Ultrathin
Single-Crystalline Silicon on Quartz (SOQ) by 150℃ Wafer
Bonding,” Sensors and Actuators A,Vol. 48, pp. 117-123 (1995).
[35] Chih-Hsiang Chang et al,“Single-Crystalline Silicon on Quartz
(SOQ) wafer by Ultra-lowtemperature (100 ℃) wafer bonding and
Thinning Approaches,”Tamkang Journal of Science and
Engineering, Vol. 8, No. 3, pp. 207-210, (2005).
[36] 林明憲,矽晶圓半導體材料技術,全華科技圖書股份有限司,
pp2.62-2.74,(1999).
[37] http://www.gequartz.com/
[38] Q.-Y. Tong et al, “ Low Temperature Si Layer Splitting”, 1997
IEEE Intl.SOI Conference, 97CH36069, 126 (1997, EI).
[39] Q.-Y. Tong et al, “ A smarter-cut approach to low temperature
silicon layer transfer”, Appl. Phys. Lett. 72, 49, (1998, SCI).
[40] C. -H. Huang et al, “Low-Stress Silicon Layer Transfer onto
Quartz by means of Enhanced Hydrogen Ion Capture within an
Epitaxial Si (B/Ge) Buried Layer,” Electrochem. Solid-State Lett.,
12 H423 (2009, SCI).
[41] A. J. Pitera and E. A. Fitzgerald, “Hydrogen gettering and
strain-induced platelet nucleation in tensilely strained Si0.4Ge0.6/Ge
for layer exfoliation applications”, J. Appl. Phys. 97, 104511
(2005).
[42] R. Hull et al, “Interaction between surface morphology and misfit
dislocations as strain relaxation modes in lattice-mismatched
heteroepitaxy”, J. Phys.: Condens. Matter 14, 12829 (2002).
[43] M. Ohring, “Materials science of thin films: deposition and
structure”, Academic Press, San Diego, CA, 436 (2002).
[44] L. Shao, Y. Lin, J.-K. Lee, Q.-X. Jia, Y.-Q. Wang et al., “Plasma
hydrogenation of strained Si/SiGe/Si heterostructure for layer
transfer without ion implantation”, Appl. Phys. Lett. 87, 091902
(2005).
[45] D. M. Isaacson, A. J. Pitera, and E. A. Fitzgerald, “Relaxed graded
SiGe donor substrates incorporating hydrogen-gettering and buried
etch stop layers for strained silicon layer transfer applications”, J.
Appl. Phys. 101, 013522 (2007).
[46] 王宏偉,矽/石英晶圓鍵合之研究,國立中央大學機械工程學系
碩士論文,(2001).
|