博碩士論文 973203037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.117.184.93
姓名 薛少宗(Shao-Zong Xiue)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 矽/石英晶圓鍵合之熱壓研究
(Investigation of Si/Quartz Wafer Bonding for Hot Press)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 異質材料的晶圓接合技術由於能克服材料本身在磊晶技術上的限制,因而不受限於相異晶格材料,於半導體與光電產業上提供多樣化的複合基板,深具研究發展與商業化價值。其中石英上覆矽(SOQ)晶圓得以應用在微機電系統、平面顯示器、生物醫療等科技領域,但石英與矽晶圓的熱膨脹係數差異甚大,導致接合後加溫同時因熱應力增加造成翹曲、破裂甚至分離,在無法有效退火增加鍵結能的情況下使後續的薄化製程遭受困難。
在研究中試圖從熱壓試驗機(Hot Press)的壓力參數調整出有效抑制因熱應力所衍生出膨脹及形變的問題。利用上、下壓板給予矽/石英晶圓對一夾持力與後續升溫所產生之應力抗衡,結果顯示鍵合溫度足以超越200℃並且晶圓對沒有因熱應力產生剝離。
摘要(英) Wafer bonding technology of the dissimilar materials can surmount the material itself in the epitaxy technology which is not limited to the different crystal lattice materials. That can provide the compound substrate of diversification at the semiconductor and the optoelectronics industry, and also have research development and commercial value. Quartz on silicon (SOQ) wafer can apply in the science and technology field, such as MEMS, FPD and biomedicine…etc. Because of the mismatch of the quartz and silicon wafer thermal expansion coefficients (CTE), after the joint, thermal stress will be induced and causes the warp, breakage, even to separate. That makes the bonding pairs unable to increase the bonding energy on the effective annealing process.
In this study, we attempts to find out the pressure parameters of the hot press adjustment for effective inhibition of thermal stress generated due to the expansion and deformation problems. The top plate and the bottom plate give the silicon/quartz wafer pair clamping force and following resistance the stress generated by heating. The results show that the bonding temperature can over than 200℃ and the bonding pair wouldn’t be separated by the thermal stress.
關鍵字(中) ★ 晶圓鍵合
★ 石英上覆矽
★ 熱壓試驗機
關鍵字(英) ★ SOQ
★ hot press
★ wafer bonding
論文目次 摘要..........................................Ⅰ
英文摘要......................................Ⅱ
誌謝..........................................Ⅲ
總目錄........................................Ⅵ
圖目錄........................................Ⅸ
表目錄.......................................XII
第一章 緒論...............................................1
1.1 研究背景..........................................1
1.2 研究動機..........................................3
第二章 文獻回顧...........................................6
2.1 晶圓鍵合技術......................................6
2.1.1 直接鍵合....................................7
2.1.2 低溫鍵合...................................10
2.1.3 陽極鍵合...................................11
2.1.4 共晶鍵合...................................12
2.1.5 黏著鍵合...................................13
2.1.6 玻璃介質鍵合...............................14
2.2 薄膜轉移相關技術.................................14
2.2.1 BESOI......................................14
2.2.2 ELTRAN.....................................15
2.2.3 Smart-Cut® Process..........................16
2.3 石英與矽鍵合技術研究.............................17
2.3.1 相異材料物理和機械性質影響.................17
2.3.2 長時程退火與蝕刻方法.......................18
2.3.3 電漿處理...................................18
2.3.4 硼-氫離子佈植..............................19
2.3.5 磊晶矽(硼/鍺)層............................20
第三章 實驗方法與步驟....................................36
3.1 實驗目的.........................................36
3.2 實驗準備與流程...................................36
3.2.1 實驗機台...................................36
3.2.2 晶圓準備...................................37
3.2.3 黏著鍵合...................................37
3.2.4 直接熱處理.................................38
3.2.3 負載壓力熱處理.............................38
第四章 實驗結果與討論....................................44
4.1 矽/石英晶圓鍵合之熱壓研究........................44
4.1.1 直接熱處理.................................44
4.1.2 負載壓力熱處理.............................45
4.1.3 應力現象探討...............................46
4.1.4 壓力與溫度變化.............................47
第五章 結論與未來展望....................................58
5.1 結論.............................................58
5.2 未來展望.........................................59
參閱文獻.................................................60
參考文獻 [1] H. Xiao原著,羅正忠,張鼎張譯,半導體製程技術導論修訂版,
台灣培生教育出版,pp.5-299,(2007).
[2] 莊達人,VLSI製造技術,高立圖書有限公司,pp.74-578(2004).
[3] 陳威良,電漿離子佈植製作SOI及佈植缺陷之研究,國立清華大
學材料科學工程學系碩士論文,(2001).
[4] http://www.certichip.com/
[5] 吳志宏 等,SOI晶圓之發展現況與應用,機械工業雜誌257期,
pp.93-101,(2004).
[6] 李天錫 等,晶圓鍵合技術及其應用,工業材料雜誌170期,
pp.146-157,(2001).
[7] 劉丙寅 等,晶圓異質接合機制探討及發展現況,機械工業雜誌
269期,pp.5-20,(2005).
[8] Q.-Y. Tong and U. Gösele, “Semiconductor Wafer Bonding:
Science and Technology”, Wiley, New York, (1999).
[9] S. S. Iyer and A. J. Auberton-Hervé, “Silicon Wafer Bonding
Technology for VLSI and MEMS”, INSPEC, London, UK, (2002).
[10] M. Alexe and U. Gösele, “Wafer Bonding Applications and
Technology”, Springer-Verlag, Berlin, (2004).
[11] Q.-Y. Tong and U. Gösele, “A model of low-temperature wafer
bonding and its applications”, Journal of the Electrochemical
Society 143, (5), pp.1773-1779 ,(1996).
[12] Bower R W, Ismail M S, Roberds B E. “Low temperature Si3N4
direct bonding”. Appl. Phys. Lett,12(6)2485~3487,(1993).
[13] U. Gösele et al, “Wafer Bonding for Microsystems Technologies”,
Sensors and Actuators 74, 161, ( 1999; SCI).
[14] G.L. Sun et al, “Cool plasma activated surface in silicon direct
bonding technology”, J. de Physique, 49(C4),79, (1988).
[15] D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced
damages in oxygen plasma in situ wafer bonding,” J. Electrochem.
Soc., vol.147, pp. 2699–2702, (2000).
[16] TaekRyong Chung, Naoe Hosoda, and Tadatomo Suga. “1.3 μm
InGaAsP/InP lasers on GaAs substrate fabricated by the surface
activated wafer bonding method at room temperature”, Appl. Phys.
Lett. 72, 1565 (1998).
[17] Q.-Y. Tong, W.J. Kim, T.-H. Lee, and U. Gösele, “Low Vacuum
Bonding”, Electrochemical and Solid-State Letters, 1 (1) 52-53,
(1998; SCI).
[18] Tien-His Lee, “Semiconductor thin film transfer by wafer bonding
and advanced ion implantation layer splitting technologies”, Duke
University, (1998).
[19] U. M. Gösele et al, “Self-propagating room-temperature silicon
wafer bonding in ultra high vacuum,” Appl. Phys. Lett., vol. 67,
p.3614, (1995).
[20] G. Wallis and D.I. Pomerantz, “Field Assisted Glass-Metal
Sealing”, J. Appl. Phys. 40, 3946 (1969).
[21] D. Sparks et al, “Wafer-to-wafer bonding of nonplanarized MEMS
surfaces using solder”, J. Micromech. Microeng., 11, 630,(2001).
[22] Y. T. Cheng, L. Lin, and K. Najafi, J. Microelectromech.
“Localized silicon fusion and eutectic bonding for MEMS
fabrication and packaging”, J. Microelectromech. Syst., 9, 3,
(2000).
[23] H. Morkoc et al,“Large-band-gap SiC, III-V nitride, and II-VI
ZnSe-based semiconductor device technologies”, J. Appl. Phys.,
76, 1363, (1994).
[24] P. D. Persans et al, “Siloxane-based polymer epoxies for optical
waveguides”, in Applications of Photonic Technology 6, ed. R.
Lessard and G. Lampropoulos, SPIE Vol. 5260, 331 (2003).
[25] F. Niklaus, “ Adhesive Wafer Bonding for Microelectronic and
Microelectromechanical Systems”, Ph.D. thesis, Royal Institute of
Technology, (2002).
[26] Y. Kwon, “Wafer Bonding for 3D Integration, Ph.D. thesis”,
Rensselaer Polytechnic Institute, (2003).
[27] G. Wallis and D.I. Pomerantz, “Field Assisted Glass-Metal
Sealing”, J.Appl. Phys., Vol 40, No. 10, pp. 3946-3949, (1969).
[28] H.J.Quenzer and W.Benecke. “Low-temperature silicon wafer
bonding”,Sens.Actuators,vol.A32,pp,340-344,(1992).
[29] T. Yonehara and K. Sakaguchi, “ELTRAN®; Novel SOI Wafer
Technology”, JSAP Int.No.4, (2001).
[30] Hitoshi Habuka, “Roughness of Silicon Surface Heated Hydrogen
Ambient”,J.Electrochem.Soc,Vol.142,No9,pp.3092-3097,(1995).
[31] M. Bruel, “Silicon on insulator material technology”. Electronics
Letters, Vol. 31, Issue 14, pp. 1201-1202, Jul ,(1995).
[32] C. P. Herrero and M. Stutzmann, “Microscopic structure of
boron-hydrogen complexes in crystalline silicon”, Phys. Rev. B 38,
p.12668 (1988).
[33] J. I. Pankove, “Temperature dependence of boron neutralization in
silicon by atomic hydrogen”, J. Appl. Phys. 68, p.6532 (1990).
[34] Tong, Q.-Y., Gosele, U., Martini, T. and Reiche, M.,“Ultrathin
Single-Crystalline Silicon on Quartz (SOQ) by 150℃ Wafer
Bonding,” Sensors and Actuators A,Vol. 48, pp. 117-123 (1995).
[35] Chih-Hsiang Chang et al,“Single-Crystalline Silicon on Quartz
(SOQ) wafer by Ultra-lowtemperature (100 ℃) wafer bonding and
Thinning Approaches,”Tamkang Journal of Science and
Engineering, Vol. 8, No. 3, pp. 207-210, (2005).
[36] 林明憲,矽晶圓半導體材料技術,全華科技圖書股份有限司,
pp2.62-2.74,(1999).
[37] http://www.gequartz.com/
[38] Q.-Y. Tong et al, “ Low Temperature Si Layer Splitting”, 1997
IEEE Intl.SOI Conference, 97CH36069, 126 (1997, EI).
[39] Q.-Y. Tong et al, “ A smarter-cut approach to low temperature
silicon layer transfer”, Appl. Phys. Lett. 72, 49, (1998, SCI).
[40] C. -H. Huang et al, “Low-Stress Silicon Layer Transfer onto
Quartz by means of Enhanced Hydrogen Ion Capture within an
Epitaxial Si (B/Ge) Buried Layer,” Electrochem. Solid-State Lett.,
12 H423 (2009, SCI).
[41] A. J. Pitera and E. A. Fitzgerald, “Hydrogen gettering and
strain-induced platelet nucleation in tensilely strained Si0.4Ge0.6/Ge
for layer exfoliation applications”, J. Appl. Phys. 97, 104511
(2005).
[42] R. Hull et al, “Interaction between surface morphology and misfit
dislocations as strain relaxation modes in lattice-mismatched
heteroepitaxy”, J. Phys.: Condens. Matter 14, 12829 (2002).
[43] M. Ohring, “Materials science of thin films: deposition and
structure”, Academic Press, San Diego, CA, 436 (2002).
[44] L. Shao, Y. Lin, J.-K. Lee, Q.-X. Jia, Y.-Q. Wang et al., “Plasma
hydrogenation of strained Si/SiGe/Si heterostructure for layer
transfer without ion implantation”, Appl. Phys. Lett. 87, 091902
(2005).
[45] D. M. Isaacson, A. J. Pitera, and E. A. Fitzgerald, “Relaxed graded
SiGe donor substrates incorporating hydrogen-gettering and buried
etch stop layers for strained silicon layer transfer applications”, J.
Appl. Phys. 101, 013522 (2007).
[46] 王宏偉,矽/石英晶圓鍵合之研究,國立中央大學機械工程學系
碩士論文,(2001).
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明