博碩士論文 972203037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.16.51.157
姓名 林季平(Chi-pin Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含有短鏈段聚乙氧烯的星狀有機無機固(膠)態高分子電解質之結構鑑定及電化學特性研究
(Structural and Electrochemical Analysis of Solid and Plasticized Star-Branched Organic-Inorganic Hybrid Electrolytes with EO Chains)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分兩大部分,第一部分是利用三聚氯氰當作結構核心,並在外圍接上三嵌段共聚高分子 ED2000和矽氧烷3-isocyanate propyltriethoxysilane (ICPTES),使其形成具有星狀結構的高分子,並在星狀結構再添加含有短鏈段聚乙氧烯 (polyethylenoxy) 之矽氧烷2-[methoxy(polyethyleneoxy)propyl] trimethoxysilane (MPEOPS),並摻雜不同鋰鹽 (LiClO4) 濃度,預期加入具短鏈段聚乙氧烯之矽氧烷可以降低高分子的結晶性,並幫助鋰離子的傳遞,本研究會針對固態高分子電解質做一系列的探討研究;第二部分則是將第一部份的固態高分子電解質添加PVDF-HFP以增加其機械強度,並將其吸附電解液製備成膠態高分子電解質,期望可以提高導電度並應用於鋰電池中。
本篇論文第一部分利用到熱重分析儀 (TGA)、微差掃描卡計(DSC)、傅立葉紅外線吸收光譜儀 (FTIR)、交流阻抗分析儀 (AC-Impedance) 、掃描式電子顯微鏡 (SEM) 以及固態核磁共振光譜儀 (Solid State NMR) 等儀器分析星狀固態高分子電解質,並發現在30℃下最佳導電度可達到1 × 10-4 S/cm;第二部分利用交流阻抗分析儀測試其電化學穩定性,結果此膠態高分子電解質可以承受相當高的電壓 (7.4V),並且進一步組裝成硬幣型2032電池,和市售的聚丙烯 (PP) 隔離膜之電池作電池性能比較,發現電容量都有提升的現象。
摘要(英) Plasticized star-branched organic-inorganic hybrid electrolyte is a promising candidate for present day battery applications as it provides good mechanical and electrochemical properties. In this presentation, the dynamic properties of hyperbranched copolymer made from inorganic siloxane and polymer alkylene oxide units connected by cyanuric chloride linkage are investigated. Cyanuric chloride is chosen as the coupling core because it provides a branching site, cation binding site to help ionic transport between polymer chains. The tri-block copolymer PPG-PEG-PPG diamine (ED2000) reacts with 3-isocyanatopropyltriethoxysilane (ICPTES) and then coupling with cyanuric chloride for selective substitutions of silane modified oligo(oxyalkylene)-amines onto three chlorides of the triazine ring in a stepwise manner at 0, 25 and 130 ?C followed by co-condensation with 2-[methoxy(polyethylenoxy) propyl]trimethoxysilane (MPEOPS) to synthesize the hybrid membrane.
The star branched hybrid electrolyte shows good resistance to crystallization. The swelling ratio of the electrolyte membrane is measured with different electrolyte solvents and found to be very high in comparison to other reported polymer electrolyte membrane. The membrane exhibits ionic conductivity value near to 10-2 Scm-1. The high ionic conductivity of the electrolyte membrane is attributed to the higher percentage of swelling as it can retain sufficient amount of electrolyte solvent, thus creating channels for free movement of ions. The membrane also depicts higher electrochemical stability window versus Li/Li+ as well
IV
as stable charge-discharge behavior, which is required for practical battery applications.
關鍵字(中) ★ 星狀高分子電解質
★ 膠態高分子電解質
★ 聚乙氧烯
關鍵字(英) ★ star-branched electrolyte
★ gel polymer electrolyte
★ polyethylene oxide
論文目次 第一章 緒論……………………………………………………………..1
1-1. 簡介………………………………………………………………1
1-2. 文獻回顧…………………………………………………………3
1-2-1. 鋰二次電池……………………………………..………....3
1-2-2. 鋰高分子電池…………..………………………..………..6
1-2-3. 高分子電解質 (Polymer Electrolytes) …………..……....8
1-2-4. 固態高分子電解質 (Solid Polymer Electrolyte) .......………9
1-2-5. 膠態 (gelled-type) 高分子電解質……………..…………..15
1-2-6.微孔型高分子電解質……………………………..……20
1-2-7. 含有三氮環之高分子.………………………………….…22
1-2-8. 有機矽高分子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1-3. 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
第二章 實驗部分與原理………………………………………………27
2-1. 實驗藥品………………………………………………………..27
2-2. 儀器設備………………………………………………………..29
2-3. 高分子電解質膜之製備………………………………………..30
2-3-1.固態高分子電解質製備........................……………..30
VII
2-3-2.膠態高分子電解質製備..........….………………..32
2-3-3. 硬幣型2032電池組裝.......................……….…………..33
2-4. 儀器分析原理…………………………………………………..34
2-4-1. 熱重量分析儀....................................................……..….....34
2-4-2. 微差掃瞄熱卡計........................................................….....34
2-4-3. 傅立葉紅外線吸收光譜儀………………………..………..36
2-4-4. 交流阻抗分析儀……………………………………..……..37
2-4-5. 掃描式電子顯微鏡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
2-4-6. 固態核磁共振光譜儀……………………………..………..42
2-4-6-1. 原理簡介………………………………………………...42 2-4-6-2. 常用固態核磁共振技術………………………………...47
2-4-7. 線性掃描電位測試..………………………..……………..52
2-4-8. 鋰離子遷移數目測試………………………..……………..53
2-4-9. 電池性能測試........……………………..…………………..53
第三章 結果與討論…………………………………………………..54
3-1.3ED-3I-3M-CC 固態高分子電解質..…………………..54
3-1-1. 固態星狀高分子電解質……………………….….....…...54
3-1-2. 熱重量分析..................................….…………….....…...55
3-1-3. 微差掃描熱卡計分析..................….…………….....…...57
VIII
3-1-4. 紅外線吸收光譜之鑑定……………….………….....…...61
3-1-5. 固態電解質膜之表面分析…….………………….....…...67
3-1-6. 固態高分子電解質之導電度量測………………….....…...70
3-1-7. 固態高分子電解質之遷移數目測試……………….....…...78
3-1-8. 固態核磁共振光譜分析....................................................81
3-1-8-1.13C MAS NMR..............................................................82
3-1-8-2.13C CP/MAS NMR............................................................84
3-1-8-3.29Si MAS NMR................................................................89
3-1-8-4.1H/13C 2D WISE NMR......................................................92
3-2. 添加 PVdF-HFP 之 3ED-3I-3M-CC 膠態高分子電解質…………………………………………………………....94
3-2-1. 膠態星狀高分子電解質......................………..…......…....94
3-2-2. 膠態高分子電解質之膨潤比測試..……….……….....…...95
3-2-3. 膠態高分子電解質之導電度量測..………..……….....….102
3-2-4. 線性掃描電位分析............……………….…..………........112
3-2-5. 電池性能測試.......................................………………...….114
第四章 結 論…….…………………………………………………..118
參考文獻………………………………………………...……………120
參考文獻 1. 劉世忠―鋰電池商機看好‖產經資訊. 2003, 7月號, 45頁
2. Noor, S. A. M.;Ahmad, A.;Talib, I. A.;Rahman, M. Y. A. ionics. 2010, 16, 161-170.
3. Hajek, J. French Patent, 1949, 8, 10 1949.
4. Winter, M.;Besenhard, J. O.;Spahr, M, E.;Novak, P. Adv.Mater. 1998, 10, 725-763.
5. Peled, E.―The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems — The solid electrolyte interphase model‖, J. Electrochem.Soc. 1979, 126, 2047-2051.
6. Peled, E.;Golodnitsky, D.;Ardel, G.;Eshkenazy, V. Electrochim. Acta, 1995, 40, 2197-2204.
7. Yamaki, J. I.;Tobishima, S. I.;Hayashi, K.;Saito, K.;Nemoto, Y.;Arakawa, M. J. Power Sources, 1998, 74, 219-227.
8. Selim, R.;Bro, P. J. Electrochem. Soc. 1974, 121, 1457-1459.
9. 陳羿廷、陳玉惠,―高分子電解質在鋰二次電池上之應用研究現況‖ Chemistry. 2004, 62, 445-454.
10. Peled, E.;Golodnitsky, D.;Penciner, J.―The anode/electrolyte interface‖, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.419-456, Weley-VCH, Weinheim, Germany, 1999.
11. Matsuo, Y.;Fumita, K.;Fukutsuka, T.;Sugie, Y.;Koyama, H.;Inoue, K. J. Power Sources, 2003, 119-121, 373-377.
12. Blomgren, George E. J. Power Sources, 2003, 119-121, 326-329.
13. Ein-Eli, Y.;Thomas, S. R.;Koch, V. R. J. Electrochem. Soc. 1997,
121
144, 1159-1165.
14. Ein-Eli, Y.;Thomas, S. R.;Koch, V. R. J. Electrochem. Soc . 1996, 143, L195-L197.
15. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, DOE, 2007.
16. Xu, K. Chem. Rev. 2004, 104, 4303-4417.
17. Linden, D. Handbook of Batteries, 2nd ed., McGraw-Hill, New York, USA, 1994.
18. 動能科技股份有限公司, http://www.exa.com.tw/exa/chinese/comparison.htm
19. Fiona, M. G.―Solid Polymer Electrolyte: fundamentals and technological applications‖Chap.6, 1997, p95-123.
20. Cheradame, H.;LeNest, J. F.;Gandini, A.;Leveque, M. J. Power Sources, 1985, 14, 27.
21. Fenton, D. E.;Parker, J. M.;Wright, P. V. Polymer, 1973, 14, 589.
22. Wright, P. V. Br. Polymer. J. 1975, 7, 319.
23. Armand, M. B.;Chabagno, J. M.;Duclot, M. Second International Meeting on Solid Electrolytes, Extended Abstract, St. Andrews, Scotland, September 1978, 20.
24. Meyer, W. H. Adv.Mater. 1998, 10, 439-448.
25. Wieczorek, W.;Florjanczyk, Z.;Stevens, J. R. Electrochimica Acta, 1995, 40, 2251-2258.
26. Quartarone, E.;Mustarelli, P.;Magistris, A. Solid State Ionics, 1998, 110, 1-14.
122
27. Watanabe, M.;Kanba, M.; Matsuda, H.;Tsunemi, K.;Mizoguchi, K.;Tsuchida, E.;Shinohara, I. Chem. Rapid Commun. 1981, 2, 741-744.
28. Choe, H. S.;Carroll, B. G.;Pasquariello, D. M.;Abraham, K. M. Chem. Mater. 1997, 9, 369-379.
29. Huang, B.;Wang, Z.;Li, G.;Huang, H.;Xue, R.;Chen, L.;Wang, F. Solid State Ionics, 1996, 85, 79-84.
30. Bohnke, O.;Rousselot, C.;Gillet, P. A.;Truche, C. J. Electrochem. Soc. 1992, 139, 1862-1865.
31. Appetecchi, G. B.;Croce, F.;Scrosati, B. Electrochimica Acta, 1995, 40, 991-997.
32. Stallworth, P. E.;Greenbaum, S. G.;Croce, F.;Slane, S.;Salomon, M. Electrochimica Acta, 1995, 40, 2137-2141.
33. Jiang, Z.;Carroll, B.;Abraham, K. M. Electrochimica Acta, 1997, 42, 2667-2677.
34. Hietala, S.;Maunu, S. L.;Sundholm, F. Macromolecules, 1999, 32, 788-791.
35. Yeon, S. H.;Kim, K. S.;Choi, S.;Cha, J. H.;Lee, H. J. Phys. Chem. B, 2005, 109, 17928-17935.
36. Alamglr, M.;Abraham, K. M. J. Electrochem. Soc. 1993, 140, L96-L97.
37. Sukeshini, A. M.;Nishimoto, A.;Watanabe, M. Solid State Ionics, 1996, 86-88, 385-393.
38. Song, J. Y.;Wang, Y. Y.;Wan, C. C. J. Electrochem. Soc, 2000, 147,
123
3219-3225.
39. Murata, K.;Izuchi, S.;Yoshihisa, Y. Electrochimica Acta, 2000, 45, 1501-1508.
40. Seki, S.;Tabata, S. I.;Matsui, S.;Watanabe, M. Electrochimica Acta, 2004, 50, 379-383.
41. Andrieu, X.;Fauvarque, J. F.;Goux, A.;Hamaide, T.;M’hamdi, R.;Vicedo, T. Electrochimica Acta, 1995, 40, 2295-2299.
42. Shibata, M.;Kobayashi, T.;Yosomiya, R.;Seki, M. European Polymer Journal, 2000, 36, 485-490.
43. Xi, J.;Miao, S.;Tang, X. Macromolecules, 2004, 37, 8592-8598.
44. Vallee, A.;Besner, S.;Prud’homme, J. Electrochimica Acta, 1992, 37, 1579.
45. Fujinami, T.;Tokimune, A.;Mehta, M. A. Chem. Mater. 1997, 9, 2236-2239.
46. Angell, C. A.;Liu, C.;Sanchez, E. Nature, 1993, 362, 137-139.
47. Feullade, G.;Perche, P.;J. Appl. Electrochem, 1975, 5, 63.
48. Bohnke, O.;Rousselot, C.;Gillet, P. A.;Truche, C. J. Electrochem. Soc, 1992, 139, 1862-1865.
49. Croce, F.;Brown, S. D.;Greenbaum, S. G.;Slane, S. M.;Salomon, M. Chem. Mater. 1993, 5, 1268-1272.
50. Stallworth, P. E.;Li, J.;Greenbaum, S. G.;Croce, F.;Slane, S. Solid State Ionics, 1994, 73, 119-126.
51. Abraham, K. M.;Alamgir, M. Solid State Ionics, 1994, 70, 20.
52. Dias, Felix B.;Plomp, L.;Veldhuis, Jakobert B. J. J. Power Sources,
124
2000, 88, 169-191.
53. Chintapalli, S.;Frech, R. Solid State Ionics, 1996, 86-88, 341-346.
54. Borghini, M. C.;Mastragostino, M.;Zanelli, A. Electrochimica Acta. 1996, 41, 2369-2373
55. Alamgir, M.;Abraham, K. M.―Lithium Batteries – New Materials, Developments and Perspectives‖, in G. Pistoia ( Ed. ) Elsevier, 1994, p114, Chap3.
56. Yang, C. R.;Perng, J. T.;Wang, Y. Y.;Wan, C. C. J. Power Sources, 1996, 62, 89-93.
57. Gozdz, A. S.;Tarascon, J. M.;Schmutz, C. N.;Warren, P. C.;Gebizlioglu, O. S.;Shokoohi, F. Ext. Abstr.-ECS Fall Meeting, Miami, Florida, October 9-14, 94/2, 117, 1994.
58. Gozdz, A. S.;Schmutz, C. N.;Tarascon, J. M. U.S Patent, 1994, 5, 296, 318.
59. Gozdz, A. S.;Schmutz, C. N.;Tarascon, J. M.;Warren, P. C. U.S Patent, 1995, 5, 418, 091.
60. Gozdz, A. S.;Schmutz, C. N.;Warren, P. C. U.S Patent, 1995, 5, 460, 904.
61. Sekhon, S. S.;Singh, H. P. Solid State Ionics, 2002, 152-153, 169-174.
62. Manuel Stephan, A.;Teeters, D. Electrochimica Acta. 2003, 48, 2143-2148.
63. Kim, D. W.;Sun, Y. K. J. Power Sources, 2001, 102, 41-45.
64. Michot, T.;Nishimoto, A.;Watanabe, M. Electrochimica Acta. 2000,
125
45, 1347-1360.
65. Boudin, F.;Andrieu, X.;Jehoulet, C.;Olsen, I. I. J. Power Sources, 1999, 81-82, 804-807.
66. Itoh, T.;Ikeda, M.;Hirata, N.;Moriya, Y.;Kubo, M.;Yamamoto, O. J. Power Sources, 1999, 81-82, 824-829.
67. Desai, Neli P.;Hubbell, Jeffrey A. Journal of Biomedical Materials Research, 1991, 25, 829-843.
68. H. B.;M. W. Journal of Chromatography A. 1996, 728, 447-454.
69. Lin, C. E.;Li, F. K.;Lin, C. H. Journal of Chromatography A. 1996, 722, 211-220.
70. Jan, J. Z.;Huang, B. H.;Lin, J. J. Polymer, 2003, 44, 1003-1011.
71. Dean, M. T.;Mary Ann, B. M.;James, D. K.;William, R. B. Macromolecules, 2006, 39, 120-127.
72. Kaskhedikar, N.;Burjanadze, M.;Karatas, Y.;Wiemhofer, H. D. Solid State Ionics, 2006, 177, 3129-3134.
73. Rabek, J. F. ―Experimental Methods in Polymer Chemistry‖, New York, 1980.
74. Besenhard, J. O. In Handbook of Battery Materials;Wiley-VCH: Weinheim, Germany. 1999.
75. Andrew, E. R.;Bradbury, A.;eades, R. G. Nature. 1058, 182, 1659.
76. Lowe, I. J. Phys. Rev. Lett. 1959, 2, 285.
77. Schmidt-Rohr, K.;Clauss, J.;Spiess, H. W. Macromolecules, 1992, 25, 3273.
78. Evans, J.;Vincent, Colin A. Polymer, 1987, 28, 2324-2328.
126
79. Digar, M.;Hung, S. L.;Wang, H. L.;Wen, T. C.;Gopalan, A. Polymer, 2002, 43, 681.
80. Jannasch, P. Electrochim. Acta. 2001, 46, 1641.
81. Murata, K.;Izuchi, S.;Yoshihisa, Y. Electrochim. Acta. 2000, 45, 1501.
82. Jannasch, P. Polymer. 2001, 42, 8629.
83. de Zea Bermudez, V.;Carlos, L. D.;Alca’cer, L. Chem. Mater. 1999, 11, 569.
84. Jeon, J. D.;Kwak, S. Y. Macromolecules, 2006, 39, 8027.
85. Andre’L. B. S. Bathista, Eduardo R. deAzevedo, Antonio C. Bloise, Karim Dahmouche, Patrick Judeinstein, and Tito J. Bonagamba, Chem. Mater. 2007, 19, 1780.
86. Jason Mattia, Paul Painter, Macromolecules, 2007, 40, 1546.
87. Liang, W. J.;Kuo, C. L.;Lin, C. L.;Kuo, P. L. J. Polym. Sci. Pol. Chem. 2002, 40, 1226.
88. Gray, F. M. Polymer electrolytes 1997, The Royal Society of Chemistry, UK, Chap. 1.
89. Watanabe, M.;Sanui, K.;Ogata, N.;Kobayashi, T.;Ohtaki, Z. J. Appyl. Phys. 1985, 57, 123.
90. Chen, W. B.;Feng, H. Q.;He, D. O.;Ye, C. O. J. Appyl. Polym. Sci. 1998, 67, 139.
91. De Paoli, M. A.;Zanelli, A.;Mastragostino, M.;Rocco, A. M. J. Electroana. Chem. 1997, 435, 217.
92. Hu, S.;Fang, S. Electrochim. Acta. 1999, 44, 2721.
127
93. Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8, 339.
94. Vogel, H. Phys. Z. 1921, 22, 645.
95. Chintapalli, S.; Frech, R. Solid State Ionics. 1996, 86-88, 341.
96. Albinsson, I.; Mellander, B.-E.; Stevens, J.R. J. Chem. Phys. 1992, 96, 681.
97. Chen-Yang, Y. W.; Hwang, J. J.; Chang, F. H. Macromolecules 1997, 30, 3825.
98. Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Mater. Chem. Phys .2002, 74, 98.
99. Adam, G.; Gibbs, J. H. J. Chem. Phys. 1965, 43, 139.
100. Bruce, P.G.; Vincent, C. A. J. Chem. Soc., Faraday Trans. 1993, 122, 131.
101. Frech, R.; Manning, J.; Teeters, D.; Black, B. E. Solid State Ionics 1988, 28-30, 954.
102. Geiculescu, Olt E.;Rajagopal, Rama;Creager, Stephen E.;DesMarteau, Darryl D.;Zhang, Xiangwu;Fedkiw, Peter. J. Phys. Chem. B, 2006, 110, 23130-23135.
103. Liang, W. J.;Kuo, P. L. Polymer, 2004, 45, 1617.
104. Schmidt-Rohr K.;Clause J.;Spiess H. W. Macromolecules, 1992, 25, 3273-3277.
105. Yeon, S. H.;Kim, K. S.;Choi, S.;Cha, J. H.;Lee, H. J. Phys. Chem. B, 2005, 109, 17928-17935.
106. Tigelaar, D. M.;Meador, M. A. B.;Bennett, W. R. Macromolecules, 2006, 39, 120.
128
107. Tigelaar, D. M.;Meador, M. A. B.;Bennett, W. R. Macromolecules, 2007, 40, 4159.
108. Ue, M. J. Electrochem. Soc. 1994, 141, 3336.
109. Singh, B.;Kumar, R.;Sekhon, S. S. Solid State Ionics, 2005, 176, 1577.
110. Tokuda, H.;Tsuzuki, S.;Susan, M. A. H.;Hayamizu, K.;Watanabe, M. J. Phys. Chem. B. 2006, 110, 19593.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2010-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明