以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:25 、訪客IP:3.22.248.177
姓名 陳豊官(Li-Kuan Chen) 查詢紙本館藏 畢業系所 化學學系 論文名稱 環烯烴交聯結構之聚醚醚酮酮質子交換膜
(Cross-Linked Norbornene Sulfonated poly (ether ether ketone ketone) for Proton Exchange Membrane Fuel Cell)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究藉由未飽合雙鍵環烯烴結構單體(NB-diOH)及帶有磺酸根的單體(DHNS),並加上帶有氟原子的苯酮結構單體(DFBP)所聚合出帶有磺酸化聚醚醚酮酮的高分子聚合物,並進一步製成質子交換薄膜。當高分子薄膜帶有的磺酸根越多,所帶來的效應如:導電度、吸水量甚至離子交換容積也相對來的較高許多。除此之外,本實驗也藉由環烯烴結構中未飽和雙鍵進行交聯作用,降低在甲醇穿透率及吸水吸甲醇量的表現,對此電解質薄膜顯現出益處。在此研究可針對調控磺酸化程度(DHNS 含量)加上適當的交聯反應(di-vinyl benzene ;DVB 含量)可以呈現出高導電度及低膨潤的電解質薄膜。整個NB-系列的薄膜可以發現出具有好的導電度及低膨潤性的薄膜為NB-sPEEKK-80X,在薄膜厚度為85 μm 時,直接甲醇燃料電池測試中表現出:60℃時,效能為16.5 mW/cm2 及50℃時,效能則為14.5 mW/cm2。
另一方面,也在NB-sPEEKK 高分子中添加入sTNT(sulfonated Titanium dioxide nanotube)表面修飾磺酸根之奈米管狀結構,其具備良好的保水性質,並形成有機/無機複合薄膜,讓sTNT 無機物的混摻在NB-sPEEKK 主鏈上分散性有較佳的均勻度,再藉由無機物上的磺酸根及NB-sPEEKK 主鏈上磺酸根之間的作用力,使得水分子在有機/無機的介面產生更強的鍵結,來幫助質子在親水端的水通
道有更佳的傳遞路徑。初步看出,NB-sPEEKK80/10 sTNT 這塊薄膜有較佳的導電度及最佳分散性。
摘要(英) A novel proton conducting membrane where the poly (ether ether ketone ketone) copolymer containing unsaturated norbornene unit and pendant sulfonic acid were
synthesized by aromatic substitution polymerization reaction using 4,4’’-Difluorobenzophenone (DFBP), 6,7-dihydroxy -2-naphthalenesul -fonate (DHNS), and 1,4-dihydro-1,4-methanonaphthalene-5,8-diol (NB-diOH) monomers. The degree of sulfonation can be controlled by adjusting the DHNS and NB-ph-diOH mole ratio in feed stream. The proton conductivity, water uptake and ion exchange capacity (IEC) all increase with increasing the DHNS feed concentration. On the other hand, cross-linking through double bond in norbornene unit reduces both the methanol permeability and methanol solvent uptake. Proton conducting membrane with high proton conductivity and low methanol swelling can be achieved by optimizing the
degree of sulfonation (DS) with the degree of cross-linking. The study shows that these two structure characteristics can be adjusted separately by controlling the DHNS feed concentrations (for optimized DS) and di-vinyl benzene (DVB) for suitable degree of cross-linking. The best membrane with high proton conductivity and low
degree of swelling is NB-sPEEKK-80X. The DMFC single cell assembled using this membrane (85μm thickness) displayed fair density reaching 16.5mW/cm2 at 60℃ and 14.5 mW/cm2 at 50℃.
In addition, we also added the structure sTNT(sulfonated Titanium dioxide nanotube) into NB-sPEEKK polymers that sTNT have a good retention water and sulfonic acid groups on the surface to form a nice uniform in dispersion of
organic/inorganic composite membrane. And the water in the membrane have a interaction by the sulfonic acid group bonding between sTNT and NB-sPEEKK polymer, to help the proton have a good transportation in the water channel of
hydrophilic region. Now initially the NB-sPEEKK80/10 sTNT membrane had a good conductivity and dispersion.
關鍵字(中) ★ 甲醇穿透
★ 環烯烴結構
★ 交聯
★ 質子交換薄膜
★ 直接甲醇燃料電池關鍵字(英) ★ Direct methanol fuel cell
★ Cross-linking
★ Methanol cross-over
★ Norbornene structure
★ Proton exchange membrane論文目次 目錄
第一章 緒論...............................................1
1-1 前言....... ..........................................1
1-2 燃料電池簡述..........................................2
1-3 研究動機..............................................5
第二章 文獻回顧...........................................7
2-1 含氟元素的高分子: Nafion 或Nafion 的修飾薄膜..........9
2-2 碳氫(芳香環)高分子...................................10
2-3 有機-無機複合高分子..................................14
2-4 酸鹼混合性高分子.....................................18
第三章 實驗方法及原理....................................21
3-1 實驗儀器及技術原理...................................21
3-1-1 核磁共振光譜儀 (Nuclear Magnetic Resonance)........21
3-1-2 傅立葉式紅外線吸收光譜儀...........................21
3-1-3 熱重分析儀 (Thermal Gravimetric Analysis, TGA).....22
3-1-4 微差熱掃描卡計 (Differential Scanning Calorimeter, DSC).....................................................22
3-1-5 吸水膨潤比 (Water Uptake) 與甲醇膨潤比 (Solvent Uptake)..................................................23
3-1-6 離子交換容量 (Ion Exchange Capacity;IEC...........23
3-1-7 甲醇滲透率 (Methanol permeability)................24
3-1-8 質子導電度 (Proton Conductivity)...................25
3-1-9 直接甲醇測試平台 ..................................27
3-1-10 原子力顯微鏡 (Atomic Force Microwave, AFM)........28
3-2 高分子合成步驟及薄膜製備.............................29
3-2-1 NB-quinone (1) 的合成..............................29
3-2-2 NB-diOAc (2) 的合成................................30
3-2-3 NB-diOH (3) 的合成.................................30
3-2-4 NB-sPEEKK-80 的合成................................31
3-2-5 二氧化鈦奈米管的合成 (TNT).........................32
3-2-6 二氧化鈦奈米管表面磺酸化修飾 ( sTNT )..............32
3-2-7 NB-系列薄膜製......................................33
3-2-8 NB-交聯(AIBN)系列薄膜製備..........................33
3-2-9 NB-交聯(DVB+AIBN)系列薄膜製備......................33
3-2-10 有機/無機複合薄膜製備(NB-sPEEKK/sTNT).............33
3-3 實驗藥品.............................................34
3-3-1 實驗所使用之化學藥品...............................34
3-3-2 實驗所使用之溶劑...................................36
3-3-3 溶劑除水的部分.....................................36
第四章 結果與討論........................................37
4-1 1H 核磁共振光譜圖....................................39
4-2 13C 核磁共振光譜圖...................................41
4-3 傅立葉紅外線光譜 (FT-IR)分析.........................42
4-4 熱重量分析儀 (TGA) ..................................43
4-5 微差掃描熱卡計分析 (DSC) ............................46
4-6 質子導電度 (Proton Conductivity) ....................48
4-7 離子交換容積 (IEC) ..................................50
4-8 吸水膨潤比 (Water Uptake) ...........................51
4-9 甲醇穿透率 (Methanol Permeability)及膨潤比 (Solvent Uptake)..................................................53
4-10 直接甲醇燃料測試效能(DMFC-Performance)..............55
4-11 原子力顯微鏡(AFM)...................................57
4-12 SEM-二氧化鈦奈米管(TNT)和磺酸化二氧化鈦奈米管(sTNT)結構鑑定...................................................60
4-13 NB-80/sTNT 系列薄膜之微差掃描熱卡計分析-DSC.........61
4-14 NB-80/sTNT 系列薄膜之熱重量分析儀-TGA...............63
4-15 NB-80/sTNT 系列薄膜定溼變溫導電度...................65
4-16 NB-80/sTNT 系列薄膜定溼變溫water uptake 測試........66
4-17 NB-80/sTNT 系列薄膜定溫變溼導電度...................68
4-18 NB-80/sTNT 系列薄膜定溫變溼之吸水量water uptake ....69
4-19 NB-80/sTNT 系列薄膜離子交換容積.....................71
4-20 NB-80/sTNT 系列甲醇穿透率和吸甲醇量圖...............72
4-21 NB-75/sTNT系列薄膜 DSC分析譜........................76
4-22 NB-75/sTNT系列薄膜在TGA及DTG........................78
4-23 NB-75/sTNT 系列薄膜定溼變溫導電度和吸水量water uptake...................................................80
4-24 NB-75/sTNT 系列薄膜定溫變溼導電度及吸水量和離子交換容
積.......................................................82
4-25 NB-75/sTNT 薄膜甲醇穿透率和吸甲醇量.................84
第五章 結論與未來展望....................................87
第六章 參考文獻..........................................89
附錄.....................................................93
表目錄
表 3-1 D-Solvent化學位移 (Chemical Shift)................22
表 4-1 NB-sPEEKK 高分子之合成............................40
表 4-2 NB系列高分子薄膜之玻璃轉化溫度....................47
表 4-3 NB系列薄膜溶解度之呈現............................56
表 4-4 統整NB系列薄膜及Nafion 117之物性檢測…............59
表 4-5 統整NB-80系列薄膜和NB-80/sTNT系列薄膜的物性檢測...75
圖目錄
圖 1-1 (a) 傳統熱機發電 ( b) 燃料電池發電.................2
圖 1-2 氫能燃料電池工作原理示意圖.........................3
圖 1-3 直接甲醇電池示意圖.................................5
圖 2-1 Nafion 化學結構式..................................7
圖 2-2 Nafion 內部通道及water cluster 示意圖..............8
圖 2-3 Nafion 和碳氫高分子(sPEEKK)之微結構說明...........10
圖 2-4 cross-linker star (CCS) 交聯結果示意圖............11
圖 2-5 聚合後帶有propenyl group 的 sodium poly(ether ether ketone)s 結構圖..........................................12
圖 2-6 poly(arylene ether ketone) copolymers 之合成過程及結構示意圖.................................................13
圖 2-7 poly(ether ether ketone) (SPEEK)合成過程及交聯示意圖.......................................................14
圖 2-8 sulfonated poly(arylene ether ether ketone)s 與含silane 化合物進行水解縮合反應及交聯示意圖................16
圖 2-9 SPEEK 與OG-POSS 分別與ODA 及ODADS 反應過程及交聯結構示意圖...................................................17
圖 2-10 PEEK 與polybenzimidazole (PBI)結構示意圖.........18
圖 2-11 poly(benzimidazole-co-aniline)合成過程及交聯結構示意圖.....................................................19
圖 2-12 sPEEK 與不同含量mBMI 所構成物理交聯的結構........20
圖 3-1 甲醇穿透率公式及裝置圖............................24
圖 3-2 溼度控制模組及交流阻抗儀..........................26
圖 3-3 直接甲醇燃料電池測試平台..........................27
圖 3-4 原子力顯微鏡之原理示意圖..........................28
圖 3-5 二氧化鈦奈米管磺酸化修飾示意圖....................34
圖 4-1 研究流程圖........................................37
圖 4-2 NB-sPEEKK polymer 合成過程示意圖..................38
圖 4-3 NB-sPEEKK 苯環氫譜圖,(a) NB-75、(b) NB-80 和(c)
NB-90....................................................40
圖4-4 NB-sPEEKK 氫譜圖...................................41
圖 4-5 NB-sPEEKK 碳譜圖 (A) NB-80 和(B)NB-90
( * 為 solvent peak )....................................42
圖 4-6 NB 系列薄膜之FT-IR 光譜圖,(a) NB-90, (b) NB- 90X (c) NB-80(d) NB-80X (e) NB- 75 (f) NB -75X...............43
圖 4-7 NB-sPEEKK 系列薄膜之TGA 及DTG 圖..................45
圖 4-8 DSC 圖譜,(a) NB-90, (b) NB- 90X (c) NB-90X(DVB) (d) NB-80 (e) NB-80X (f) NB- 80X(DVB)(g) NB-75 (h) NB- 75X......................................................47
圖 4-9 NB-sPEEKK 變溼導電度..............................49
圖 4-10 NB-sPEEKK 變溫導電度圖...........................49
圖 4-11 NB-sPEEKK 導電度及離子交換容積...................50
圖 4-12 NB-sPEEKK 變溼吸水膨潤比.........................52
圖 4-13 NB-sPEEKK 變溫吸水膨潤比.........................52
圖 4-14 NB-sPEEKK 甲醇穿透率及甲醇膨潤比.................54
圖 4-15 NB-sPEEKK 不同濃度甲醇膨潤比.....................54
圖 4-16 NB-80、NB-80X 和Nafion 117 直接甲醇燃料電池測試效能.......................................................56
圖 4-17 (a) Nafion 117、(b) NB-80、(c) NB-80X 之原子力顯微鏡表面結構圖.............................................58
圖 4-18 NB系列薄膜內部水的擴散速率.......................58
圖 4-19 (a)二氧化鈦奈米管(TNT) 和 (b)磺酸化二氧化鈦奈米管(sTNT)...................................................60
圖 4-20 NB-80/sTNT 系列薄膜DSC 圖譜-(a) NB-80、(b) NB-80X、
(c) NB-80X(DVB)、(d)NB-80/50phr-py-SiO2、(e) NB-80/3sTNT、
(f) NB-80/5sTNT、(g) NB-80/10sTNT、(h) NB-80/10sTNT (X)、
(i) NB-80/15sTNT.........................................62
圖 4-21 NB-80/sTNT系列薄膜在TGA及DTG的圖譜...............64
圖 4-22 NB-80/sTNT系列薄膜在100% RH變溫導電度的圖譜......67
圖 4-23 NB-80/sTNT系列薄膜在100% RH 變溫吸水量water uptake 圖譜.....................................................67
圖 4-24 NB-80/sTNT系列薄膜定溫變溼導電度圖譜圖...........70
圖 4-25 NB-80/sTNT系列薄膜定溫變溼之吸水量water uptake圖譜.......................................................70
圖 4-26 NB-80/sTNT薄膜室溫導電度和離子交換容積的圖譜.....73
圖 4-27 NB-80/sTNT 薄膜甲醇穿透率和吸甲醇量圖譜..........74
圖 4-28 NB-80/sTNT 不同甲醇溶液濃度-吸甲醇量圖譜.........74
圖 4-29 NB-75/sTNT 系列薄膜 DSC 圖譜-(a) NB-75、(b) NB-75X、(c) NB-75/3sTNT、(d) NB-75/5sTNT、(e) NB-75/10sTNT................................................77
圖 4-30 NB-75/sTNT系列薄膜在TGA及DTG.....................79
圖 4-31 NB-75/sTNT系列薄膜在100% RH變溫導電度………………81
圖 4-32 NB-75/sTNT系列薄膜在100% RH變溫吸水量water uptake 圖譜.....................................................81
圖 4-33 NB-75/sTNT系列薄膜定溫變溼導電度圖譜.............83
圖 4-34 NB-75/sTNT 系列薄膜定溫變溼之吸水量water uptake 圖譜.......................................................83
圖 4-35 NB-75/sTNT薄膜室溫導電度和離子交換容積的圖譜.......................................................84
圖 4-36 NB-75/sTNT 薄膜甲醇穿透率和吸甲醇量圖譜.......................................................85
圖 4-37 NB-75/sTNT不同甲醇溶液濃度-吸甲醇量圖譜..........85
圖 4-38 NB-sPEEKK/sTNT 複合薄膜示意圖....................86
圖 4-39 NB-sPEEKK/sTNT(X) 交聯後複合薄膜示意圖...........87
Scheme 目錄
Scheme 3-1 NB-quinone 的合成.............................30
Scheme 3-2 NB-diOAc 的合成...............................30
Scheme 3-3 NB-diOH 的合成................................31
Scheme 3-4 NB-80 的合成..................................32
參考文獻 [1] 許閣倫,環烯烴聚醚醚酮與聚醚醚酮酮質子傳導膜之開發,中央大學化學所碩士論文,97 年6 月.
[2] 翁芳柏,經濟工業局技術報導之燃料電池簡介,元智大學機械所,2001年10 月.
[3] http://www.clean-mobile.com/dmfc
[4] 資料來源﹕SRI/PEP 223,Jul 1998、
www.teamzeon.com/docs/COP616_files/frame.htm/化工所 ITIS 計畫整理
[5] S.P. Kusumocahyo, M. Sudoh, Dehydration of acetic acid by pervaporation with charged membranes. J. Membr. Sci 1999, 161, 77-83.
[6] K.Y. Cho, H.Y. Jung, S.S. Shin, N.S. Choi, S.J. Sung, J.K. Park, J.H. Choi, K.W.Park, Y.E. Sung, Proton conducting semi-IPN based on Nafion and crosslinked
poly(AMPS) for direct methanol fuel cell. Electrochim.Acta 2004, 50, 589-593.
[7] M. Matsuguchi , H. Takahashi, Methanol permeability and proton conductivity of a semi-interpenetrating polymer networks (IPNs) membrane
composed of Nafion® and cross-linked DVB. J. Membr. Sci 2006, 281, 707-15.
[8] T. Li, G. Zhong, R. Fu, Y. Yang, Synthesis and characterization of Nafion-cross-linked PVP semi-interpenetrating polymer network membrane for
direct methanol fuel cell. J. Membr. Sci. 2010.
[9] Q. Li, R. He, J. O.Jensen, N. J. Bjerrum, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C, Chem. Mater.
2003, 15, 4896-4915.
[10] T. K. Goh, A.P. Sulistio, A. Blencowe, J. W. Johnson, G.G.Qiao, Synthesis and characterization of core cross-linked star clusters by conventional free-radical
polymerization. Macromolecules 2007, 40, 7819-7826.
[11] S. Zhong, T. Fu, Z. Dou, C. Zhao, H. Na, Preparation and evaluation of a proton exchange membrane based on crosslinkable sulfonated poly(ether ether ketone)s.
J. Power Sources 2006, 162, 51.
[12] S. Zhong, X. Cui, H. Cai, T. Fu, C. Zhao, H. Na, Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell
applications..J. Power Sources 2007,164 ,65.
[13] S.L. Zhong, X.J. Cui, H.L. Cai, T.Z. Fu, K. Shao, H. Na, Crosslinked SPEEKAMPS blend membranes with high proton conductivity and low methanol diffusion coefficient for DMFC applications J. Power Sources 2007, 168 ,154.
[14] F.C. Ding, S.J. Wang, M. Xiao, Y.Z. Meng, Cross-linked sulfonated poly(phathalazinone ether ketone)s for PEM fuel cell application as proton-exchange
membrane. J. Power Sources 2007, 164, 488.
[15] F.C. Ding, S.J. Wang, M. Xiao, X.H. Li, Y.Z. Meng, Fabrication and properties of cross-linked sulfonated fluorene-containing poly(arylene ether ketone) for proton
exchange membrane. J. Power Sources 2007, 170, 20-27.
[16] M.H. Jeong, K.S. Lee, J.S. Lee, Synthesis and characterization of sulfonated poly(arylene ether ketone) copolymers containing crossling moiety.J. Membr. Sci
2009, 337, 145-152.
[17] S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson,M.D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK).J. Membr. Sci.2004, 233, 93-99.
[18] S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine, Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone). J. Membr. Sci.
2006 285, 306-316.
[19] B. Smitha, S. Sridhar, A.A. Khan, Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications. J. Polym. Sci.Part B: Polym. Phys.2005, 43, 1538-1547.
[20] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, Preparation and performance of a Nafion®-montmorillonite nanocomposite membrane for direct methanol fuel cell. J. Power Sources.2003, 118, 205-211.
[21] K.T. Adjemian, S.J. Lee, S. Srinivasan, J. Benziger, A.B. Bocarsly, Silicon oxide Nafion composite membranes for proton-exchange membrane Fuel Cell operation at 80-140°C. Electrochem.Soc. 2002, 149, A256
[22] H. Lin, C. Zhao, W. Ma, K. Shao, H. Li, Y. Zhang, H. Na, Novel hybrid polymer electrolyte membranes prepared by a silane-cross-linking technique for direct methanol fuel cells. Journal of Power Sources 2010, 195, 762–768.
[23] Y.C. Yen, Y.S. Ye, C.C. Cheng, C.H. Lu, L.D. Tsai, J.M. Huang, F.C. Chang, The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane
containing cross-linked proton exchange membrane. Polymer 2010, 51, 84–91.
[24] Y. Zhang, Y. Wan, G. Zhang, K. Shao, C. Zhao, H. Li, H. Na, Preparation and properties of novel cross-linked sulfonated poly(arylene ether ketone) for direct
methanol fuel cell application. J. Membr. Sci 2010, 348, 353-359.
[25] J. Kerres, A. Ullrich, F. Meier, T. Ha¨ring, Synthesis and characterization of novel
acid–base polymer blends for application in membrane fuel cells. Solid StateIonics 1999, 125, 243-249.
[26] C. M. Tang , W. Zhang, J. Kerres, Preparation and characterization of ionically cross-linked proton-conducting membranes. J. New. Mat. Electrochem. Systems
2004, 7, 287-298.
[27] S. Bhadra, N.H. Kim, J. H. Lee, A new self-cross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells. J. Membr. Sci 2010, 349, 304-311.
[28] P.P. Chu, C.S. Wu, P.C. Liu, T.H. Wang, J.P. Pan, Proton exchange membrane bearing entangled structure: Sulfonated poly(ether ether ketone)/bismaleimide
hyperbranch . Polymer 2010, 51, 1386-1394.
[29] http://www.afmuniversity.org/index.cgi?CONTENT_ID=33
[30] 陳碧玉,利用AFM-CITS 的技術來探討聚苯胺與ITO 的導電均勻性,中央大學,化學所碩士論文,92 年6 月.
[31] Y.K. Kim, J.S. Lee, C.H. Rhee, H.K. Kim,H. Chang, Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic–inorganic composite membranes. Journal of Power Sources 2006, 162,
180-185.
[32] N.S. Choi, Y.M. Lee, B.H. Lee, J.A. Lee, J.K. Park, Nanocomposite single ion conductor based on organic–inorganic hybrid. Solid StateIonics 2004, 167, 293-299.
[33] Y. Gao, G.P. Robertson, M.D.Guiver,S.D.Mikhailenko,X. Li, S. Kaliaguine,Synthesis of poly(arylene ether ether ketone ketone) copolymers containing pendant sulfonic acid groups bonded to naphthalene as proton exchange
membrane materials. Macromolecules 2004, 37, 6748-6754.
[34] J.K. Lee, J. Kerres, Synthesis and characterization of sulfonated poly(arylene thioether)s and their blends with polybenzimidazole for proton exchange
membranes, J. Membr. Sci. 2007, 294, 5-83.
[35] D. Xing, J. Kerres, Improvement of synthesis procedure and characterization of sulfonated poly(arylene ether sulfone) for proton exchange membranes, J. New
Mater. Electrochem. Systems 2006, 9, 51-60.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2010-7-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare