![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:15 、訪客IP:3.142.211.95
姓名 趙師章(Shih-Chang Chao) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器
(Fabrication of Efficient Fiber Coupler Based on Waveguide Array Structure by Two Photon Polymerization Technique)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文主要目的是驗證概念,利用波導陣列結構製作出高耦合效率光纖耦合器。在數值模擬上,利用時域有限差分法模擬光傳播圖形,模擬結果顯示波長操作於633nm且外型為高斯函數分布的平面波入射進波導陣列結構後,在出口端後方可以得到聚焦光點,其中波導核心層和覆蓋層的折射率差為0.01。當波導數目N=5、波導寬度W=0.5μm、波導間距G=0.5μm和波導長度L=2μm的波導陣列,在出口端的光場(光點大小=4.946μm)與光纖的基模(模態大小=5.888μm)在空間上最匹配,耦合效率可達95%。在製程方面,利用雙光子聚合技術製作波導陣列結構。波導陣列能讓光束聚焦的機制可以利用耦合理論來解釋,由於耦合效應使得在波導陣列中傳播的光場呈現收斂的形式,若波導陣列的長度被調整在耦合長度附近,則入射光可以在波導陣列的出口端重新分布成為聚焦光點。
摘要(英) We introduced a concept of efficient fiber coupler based on waveguide array structure. In numerical simulation, we used the Finite Difference Time Domain method to simulate propagation patterns. The simulation results showed that a Gaussian profile planar wave operated at λ=633nm which was sent into waveguide array structure could be a focal spot, where the refractive index difference Δn was 0.01. When waveguide number N=5, waveguide width W=0.5μm, waveguide gap G=0.5μm and waveguide length L=2μm, the diffraction field was matched the fundamental mode of optical fiber. The coupling efficiency η could achieve 95%. We fabricated the waveguide array by two photon polymerization technique. The focus mechanism can be realized by coupling theory. Because of the coupling effect, the wavefront of propagation wave in the waveguide array is in the form of convergence. If the waveguide length is cut around the coupling length range, the incident wave will be redistributed like a focal spot behind the output plane of waveguide array. In this work, the highest coupling efficiency is 52.64%.
關鍵字(中) ★ 波導陣列
★ 光纖耦合器
★ 光通訊關鍵字(英) ★ array waveguide grating
★ optical fiber coupler
★ optical communications論文目次 1. 摘要 ............................................................ IV
2. ABSTRACT .................................................V
3. 致謝 ............................................................ VI
4. 總目錄 .......................................................VII
5. 圖目錄 ........................................................ IX
6. 表目錄 ........................................................ XI
1. 序論 ...............................................................1
1.1. 光通訊 ............................................................................1
1.2. 積體光學 .......................................................................4
1.3. 光纖耦合器 ...................................................................6
1.4. 波導陣列透鏡 ...............................................................9
2. 理論 .............................................................12
2.1. 高斯光束 .....................................................................12
2.2. FINITE DIFFERENCE TIME DOMAIN .............................14
2.3. 雷射直寫技術 .............................................................22
3. 實驗步驟 .....................................................26
3.1. 樣品準備 .....................................................................26
3.2. 鎖模鈦藍寶石飛秒雷射系統 .....................................29
3.3. 雷射直寫系統 .............................................................31
4. 實驗結果與討論 .........................................35
4.1. 離焦與波導寬度 .........................................................35
4.2. 功率與波導寬度 .........................................................37
4.3. 波導陣列 .....................................................................39
4.4. 光場量測 .....................................................................41
4.5. 波導陣列加覆蓋層 .....................................................51
5. 結論與未來展望 .........................................52
6. 參考文獻 .....................................................54
參考文獻 1. T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, 493 - 494, (1960).
2. http://www.ofcnfoec.org/conference_program/10-Boersen.pdf
3. R. J. Mears, “Low-noise erbium-doped fiber amplifier operating at 1.54 μm,” Electronics Lett. 23, 1026-1028, (1987).
4. C. A. Brackett, “Dense Wavelength Division Multiplexing Networks: Principles and Applications,” IEEE J. Select. Areas Commun. 8, 948, (1990).
5. G. Meltz, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823-825 (1989).
6. http://www.research.ibm.com/photonics/publications/ecoc_tutorial_2008.pdf
7. V. Yurii, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature 2, 242-246, (2008).
8. J. Van Campenhout, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-oninsulator waveguide circuit,” Opt. Express 15, 6744-6749, (2007).
9. A. W. Fang, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203-9210, (2006).
10. D. Taillaert, “An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers,” IEEE J. Quantum Electronics 38, 949-956, (2002).
11. D. Taillaert, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon Technol. Lett. 15, 1249-1251, (2003).
12. F. V. Laere, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Tech. Lett. 19, 1919-1921, (2007 )
13. T. Tsuchizawa, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. of Selected Topics in Quantum Electronics 11, 232-240, (2005).
14. P. Pottierr, “Photonic crystal continuous taper for low-loss direct coupling into 2D photonic crystal channel waveguides and further
6. 參考文獻
1. T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, 493 - 494, (1960).
2. http://www.ofcnfoec.org/conference_program/10-Boersen.pdf
3. R. J. Mears, “Low-noise erbium-doped fiber amplifier operating at 1.54 μm,” Electronics Lett. 23, 1026-1028, (1987).
4. C. A. Brackett, “Dense Wavelength Division Multiplexing Networks: Principles and Applications,” IEEE J. Select. Areas Commun. 8, 948, (1990).
5. G. Meltz, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823-825 (1989).
6. http://www.research.ibm.com/photonics/publications/ecoc_tutorial_2008.pdf
7. V. Yurii, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature 2, 242-246, (2008).
8. J. Van Campenhout, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-oninsulator waveguide circuit,” Opt. Express 15, 6744-6749, (2007).
9. A. W. Fang, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203-9210, (2006).
10. D. Taillaert, “An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers,” IEEE J. Quantum Electronics 38, 949-956, (2002).
11. D. Taillaert, “A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon Technol. Lett. 15, 1249-1251, (2003).
12. F. V. Laere, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Tech. Lett. 19, 1919-1921, (2007 )
13. T. Tsuchizawa, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. of Selected Topics in Quantum Electronics 11, 232-240, (2005).
14. P. Pottierr, “Photonic crystal continuous taper for low-loss direct coupling into 2D photonic crystal channel waveguides and further
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2010-10-7 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare