博碩士論文 972206001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.147.86.246
姓名 洪國騰(Guo-Teng Hong)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 電濕式驅動系統應用於微奈米級圖樣之製作
(Fabrication of Micro/Nano patterns with EWOD Actuation)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 介電電濕式數位微流體驅動系統之探討
★ 發光二極體照明系統之色彩特性優化設計★ 以EWOD為基礎的長鏈高分子原位合成器
★ 色盲量化測試系統之研究★ 可調式自然日光模擬光源之製作
★ 演色性評估之相關性指標★ 亞精胺影響下DNA構形與DNA碎片分佈之研究
★ 生物晶片之螢光光學檢測★ 生物晶片螢光分析之微光學模組
★ 光學式生化反應即時偵測系統★ 微液滴驅動之研究與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米科技的發展將是二十一世紀的主流技術,其中微奈米圖案成像技術,亦將隨著各種功能元件的需求而朝更快速發展。微製造技術難度與日俱增,其中關鍵就是光學微影方法中,由於光繞射的現象而不易得到奈米級解析度圖形,同時大部分光學微影方法之奈米圖案成像技術的光源設備均極為昂貴。因此一個具高解析度之奈米級尺寸,又具有方便且不會昂貴的製程,為半導體製程未來重要技術。因此本論文提出以電濕式 (electrowetting on dielectric, EWOD) 驅動系統與奈米球微影術 (Nanosphere Lithography, NSL) 相結合,並運用軟蝕刻微影 (Soft Lithography) 與自組裝分子膜 (Self-Assembled Monolayer, SAM) 兩種方式,製作出微奈米級之圖樣。
摘要(英) Nanotechnology has become as the mainstream technology in the twenty-first century. Especially, the micro/nano patterning technology is also under rapid development to the needs of the various functional elements. However, the micro-fabrication technology, which is critical lithography for pattern transferring, is getting more difficult. In optic lithography, the diffraction makes it not easy to obtain the patterns with the fine structures in the nanometer scale. Moreover, the light sources for optical lithography are extremely expensive. Therefore, it is an urgent and interesting subject to develop a new process of high resolution in micro/nano-scale but convenient to implement and not expensive in cost. In this thesis, it is proposed to integrate the electrowetting on dielectric (EWOD) actuation and the nanosphere lithography (NSL). Finally, the application of practical fabrication has also been demonstrated with aids of the soft lithography and the self-assembled monolayer (SAM).
關鍵字(中) ★ 自組裝分子膜
★ 電濕式
★ 奈米球微影術
★ 軟蝕刻微影
關鍵字(英) ★ EWOD
★ NSL
★ Soft Lithography
★ SAM
論文目次 中文摘要........................iv
英文摘要.........................v
誌謝............................vi
目錄...........................vii
圖目錄..........................ix
表目錄.........................xii
第一章 緒論......................1
1.1前言......................1
1.2微奈米級圖案轉換技術......3
1.3研究動機..................8
第二章 原理......................9
2.1電濕潤....................9
2.2奈米小球.................19
第三章 晶片設計與製作...........24
3.1 EWOD晶片設計............24
3.1 EWOD晶片上層電極板製作..25
3.2 EWOD晶片下層基板製作....29
第四章 實驗結果與分析...........30
4.1 EWOD微流體系統整合......30
4.2 實驗架構................30
4.3 實驗流程................33
4.4 微奈米級圖樣製作........50
第五章 結論與未來展望...........57
參考文獻........................59
參考文獻 [1]Gordon E. Moore, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, April 19 (1965).
[2]Youngjo Tak and Kijung Yong, “Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method,” The Journal of Physical Chemistry B 109 (41), pp. 19263-19269 (2005).
[3]Yong-Jin Kim, Chul-Ho Lee, Young Joon Hong and Gyu-Chul Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett.89, 163128 (2006).
[4]Benjamin Weintraub, Yulin Deng and Zhong L. Wang, “Position-Controlled Seedless Growth of ZnO Nanorod Arrays on a Polymer Substrate via Wet Chemical Synthesis,” The Journal of Physical Chemistry C 111 (28), pp. 10162-10165 (2007).
[5]H. Kinoshita, K. Kurihara, Y. Ishii and Y. Torii, J. Vac. Scl. Tehnoi. B, 7 (6) (1989).
[6]Jr H. He, Ju H. Hsu, Chun W. Wang, Heh N. Lin, Lih J. Chen and Zhong L. Wang, “Pattern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices,” The Journal of Physical Chemistry B 110 (1), pp. 50-53 (2006).
[7]徐昭業, “奈米球微影術製造鎳鐵陣列之特性研究,” 碩士論文,國立中正大學物理研究所 (2003).
[8]蔡信行、孫光中,奈米科技導論,台北:新京文開發,p81,2004.
[9]Amit Kumar and George M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching,” Appl. Phys. Lett. 63, pp. 2002 (1993).
[10]Stephen Y. Chou, Peter R. Krauss and Preston J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 5, Vol. 272, No. 5258, pp. 85-87 (1996).
[11]Bailey, “Step and flash imprint lithography:A New Approach to High-Resolution Patterning,” Proceedings of the SPIE, Vol. 3676, pp.379-389 (1999).
[12]Bailey, “Step and flash imprint lithography:Defect analysis,” J. Vac. Sci. Technol., Vol.19, pp. 2086-2810 (2001).
[13]F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns,” Chem. Phys. Lett. 408, pp. 241-246 (2005).
[14]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K.Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8, pp. 3183-3190 (1992).
[15]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov and K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 151, pp. 79-94 (1992).
[16]P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155, pp.420-437 (1993).
[17]P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10, pp. 23-36 (1994).
[18]K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf. A 109, pp. 363-374 (1996).
[19]R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, pp. 383-385 (2003).
[20]C. B. Gorman, H. A. Biebuyck and G. M. Whitesides, “Control of the Shape of Liquid Lenses on a Modified Gold Surface using an Applied Electrical Potential Across a Self-Assembled Monolayer,” Langmuir 11, 2242-2246 (1995).
[21]B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Optical Review 12, 255-259 (2005).
[22]Varioptic, http://www.varioptic.com/en/index.php.
[23]范士岡, “通用電操控微流體平台,” 奈米通訊(Nano Communication), 16卷, No.3, pp. 15-22 (2009).
[24]S. K. Fan, T. H. Hsieh and D. Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip, Vol. 9, pp. 1236-1242 (2009).
[25]M. G. Pollack, P. Y. Paik, A. D. Shenderov, V. K. Paluma, F. S. Dietrich and R. B. Fair, “investigation of electrowetting-based microfluidic for real-time pcr application,” in miniaturized chemical and biochemical analysis system, Anonymous (2003).
[26]Y. Chang, G. Lee, F. Huang, Y. Chen and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices 8, pp. 215-225 (2006).
[27]M. G. Lippmann, “Relations entre les phenomenes electrique etcapillaires,” Ann. Chim. Phys. 5, pp. 494-549 (1875).
[28]B. Berge, “Electrocapillarity and wetting of insulator films by water,” Comptes Rendus de l’Academie des Sciences Serie II, Vol. 317, pp. 157-163 (1993).
[29]H. Liu, S. Dharmatilleke, D. K. Maurya and A. A. O. Tay, “Dielectric materials for electrowetting-on-dielectric actuation,” Microsystem technologies-micro-and nanosystems-information storage and processing systems, Vol. 16, pp. 449-460 (2009).
[30]S. K. Cho, H. Moon and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital Microfluidic Circuits,” Journal of Microelectromechanical Systems, Vol. 12, NO. 1, pp. 70-80 (2003).
[31]H. Ren, V. Srinivasan and R. B. Fair, “Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip,” TRANSDUCERS, 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 619-622 (2003).
[32]M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., Vol. 77, No. 11, pp. 1725-1726, (2000).
[33]S. W. Walker, B. Shapiro and R. H. Nochetto, “Electrowetting with contact line pinning: Compu¬ tational modeling and comparisons with experiments,” Physics of Fluids, Vol. 21, (2009).
[34]J. Kao, M. Lin, Y. C. Hu, C. S. Yu and H. C. Hu, “Multifunctional Biochemical Biochip System,” NARL (2006).
[35]Gordon E. Moore, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, April 19 (1965).
[36]John C. Hulteen and Richard P. Van Duyne, “Nanosphere lithography : A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3) (1995).
[37]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8, pp. 3183-3190 (1992).
[38]R. Micheletto, H. Fukuda and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir 11, pp. 3333-3336 (1995).
[39]D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals by Sstepwise Spin-Coating”, Adv. Mater. 16, pp. 244-247 (2004).
[40]J. Rybczynski, U. Ebels and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids and Surfaces A : Physicochem. Eng. Aspects 219, pp. 1-6 (2003).
[41]A. Winkleman, B. D. Gates, L. S. McCarty and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17, pp. 1507-1511 (2005).
[42]廖仁偉, “蛋白質原位合成生物晶片之設計與製作,” 碩士論文,國立中央大學光電研究所 (2008).
[43]鄭世偉, “ 實驗室晶片整合之設計與製作,” 碩士論文,國立中央大學光電研究所 (2009).
[44]R. Micheletto, H. Fukuda and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir, 11 (9), pp. 3333-3336 (1995).
[45]W. C. Bigelow, D. L. Pickett and W. A. Zisman, “Oleophobic monolayers : I. Films adsorbed from solution in non-polar liquids,” Journal of Colloid Science 1, pp. 513, (1946).
[46]R. G. Nuzzo and D. L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces,” Journal of the American Chemical Society 105, pp. 4481 (1983).
[47]J. D. Green, M. T. McDermott and M. C. Porter, “Nanometer-Scale mapping of chemically distinct domains at well-defined organic interfaces using friction force microscopy,” Journal of Physical Chemistry, 99, pp. 10960-10965 (1995).
[48]A. Kumar and G. M. Whitesides, “Patterned Condensation Figures as Optical Diffraction Gratings,” Science 7, Vol. 263, No. 5143, pp. 60-62 (1994).
[49]S. Friebel, J. Aizenberg, S. Abad and P. Wiltzius, “Ultraviolet Lithography of Self-Assembled Monolayers for Submicron Patterned Deposition,” Appl. Phys. Lett. 77, pp. 2406 (2000).
[50]A. Ulman, “Thin Films: Self-Assembled Monolayers of Thiols,” Academic Press, San Diego, CA (1998).
[51]A. N. Shipway, E. Katz and I. Willner, “Nanoparticle Arrays on Surfaces for Electronic, Optical and Sensoric Applications”, Chemphyschem 1, pp. 18-52 (2000).
[52]Y. Xia, B. Gates, Y. Yin and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications”, Adv. Mater. 12, pp. 693-713 (2000).
[53]P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles”, Curr. Opinion. Coll. Interf. Sci. 6, pp. 383-401 (2001) .
[54]J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,” Encyclopedia of Nanosci. and Nanotech. X , pp. 1-23 (2003).
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2010-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明