參考文獻 |
第六章 參考文獻
1. Wobus, A.M. and K.R. Boheler, Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev, 2005. 85(2): p. 635-78.
2. 游正博、錢宗良等編著, 幹細胞學. 教育部顧問室 幹細胞與組織工程教學資源中心. 民國九十七年二月.
3. HENRY E. YOUNG, et al., Adult Stem Cells. WILEY-LISS 2004. 276A: p. 75-102.
4. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
5. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
6. LJ Kliensmith, G.P., Multipotentiality of single embryonal carcinoma cells. Cancer Res
24, 1964: p. 1544–1552.
7. Andrews, P.W., et al., Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans, 2005. 33(Pt 6): p. 1526-30.
8. Chan, A.W., et al., Clonal propagation of primate offspring by embryo splitting.
Science, 2000. 287(5451): p. 317-9.
9. Temple, S., Embryonic stem cell self-renewal, analyzed. Cell, 2003. 115(3): p. 247-8.
10. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med, 2005. 11(2): p. 228-32.
11. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. nature, 1981. 292(5819): p. 154-6.
12. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
13. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. science, 2007. 318(5858): p. 1917-20.
14. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage differentiation from
human embryonic stem cell lines. Stem Cells, 2001. 19(3): p. 193-204.
15. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. science, 1998. 282(5391): p. 1145-7.
16. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
17. Takahashi, K., et al., Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc, 2007. 2(12): p. 3081-9.
18. 林培正副教授等編著, 科普化教材—人類胚胎幹細胞的研究與應用. 國科會科教處, 2005. 中山醫學大學醫學檢驗暨生物技術學系.
19. Lijun Yang, et al, In vitro trans-differentiation of adult hepatic stem cells into
pancreatic endocrine hormone-producing cells. PNAS June 11, 2002 99 p. 8078-8083
20. Oh, S.H., et al., Adult bone marrow-derived cells trans-differentiating into
insulin-producing cells for the treatment of type I diabetes. Lab Invest, 2004. 84(5): p.
607-17.
21. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science, 1999. 284(5411): p. 143-7.
22. 劉華昌、錢宗良等編著, 再生醫學. 中華民國九十七年二月.
23. Cartwright, P., et al., LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 2005. 132(5): p. 885-96.
24. Woltjen, K., et al., piggyBac transposition reprograms fibroblasts to induced
pluripotent stem cells. nature, 2009. 458(7239): p. 766-70.
25. Charles A. Goldthwaite, J., Ph.D. , The promIse of Induced pluripotent stem cells(ipscs). Stem cell information NIH, 2010.
26. Ko K and Scholer HR., Embryonic stem cells as a potential source of gametes. .
Seminar of Reproductive Medicine 24, 2006. .
27. Cedar, S.H., et al., From embryos to embryonic stem cells: biopolitics and therapeutic potential. Reprod Biomed Online, 2006. 13(5): p. 725-31.
28. Damjanov, I., The road from teratocarcinoma to human embryonic stem cells. Stem Cell Rev, 2005. 1(3): p. 273-6.
29. Semb, H., Human embryonic stem cells: origin, properties and applications. APMIS, 2005. 113(11-12): p. 743-50.
30. Chambers, S.M., et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 2009. 27(3): p. 275-80.
31. CONGER, K., Dramatic transformation: Researchers directly turn mouse skin cells into neurons, skipping IPS stage. Stanford school of medicine, 2010
32. Bleil, J.D. and P.M. Wassarman, Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro. Proc Natl Acad Sci U S A, 1980. 77(2): p. 1029-33.
33. Svalander, P.C., et al., Trophectoderm surface expression of the cell adhesion molecule cell-CAM 105 on rat blastocysts. Development, 1987. 100(4): p. 653-60.
34. Dani, C., et al., Paracrine induction of stem cell renewal by LIF-deficient cells: a new ES cell regulatory pathway. Dev Biol, 1998. 203(1): p. 149-62.
35. Jeong, C.H., et al., Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in Vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. J Biol Chem, 2007. 282(18): p. 13672-9.
36. Mo, C., W. Chearwae, and J.J. Bright, PPARgamma regulates LIF-induced growth and self-renewal of mouse ES cells through Tyk2-Stat3 pathway. Cell Signal, 2010. 22(3): p. 495-500.
37. Bommhardt, U., et al., MEK activity regulates negative selection of immature
CD4+CD8+ thymocytes. J Immunol, 2000. 164(5): p. 2326-37.
38. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
39. Lunyak, V.V. and M.G. Rosenfeld, Epigenetic regulation of stem cell fate. Hum Mol Genet, 2008. 17(R1): p. R28-36.
40. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003. 17(1): p. 126-40.
41. Masui, S., et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol, 2007. 9(6): p. 625-35.
42. Makino, H., et al., Mesenchymal to embryonic incomplete transition of human cells by chimeric OCT4/3 (POU5F1) with physiological co-activator EWS. Exp Cell Res, 2009. 315(16): p. 2727-40.
43. Looijenga, L.H., et al., POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res, 2003. 63(9): p. 2244-50.
44. Loh, Y.H., et al., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006. 38(4): p. 431-40.
45. Cavaleri, F. and H.R. Scholer, Nanog: a new recruit to the embryonic stem cell
orchestra. Cell, 2003. 113(5): p. 551-2.
46. Faherty, S., et al., Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 expression: the role of the cAMP/PKA pathway. In Vitro Cell Dev Biol Anim, 2007. 43(1): p. 37-47.
47. Aleksander Giwercman, et al., lmmunohistochemical Expression of Embryonal Marker TRA-I-60 in Carcinoma In Situ and Germ Cell Tumors of the Testis CANCER 1993. 72 p. 1308-1314.
48. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-55.
49. Henderson, J.K., et al., Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 2002. 20(4): p. 329-37.
50. Levenstein, M.E., et al., Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells, 2006. 24(3): p. 568-74.
51. Draper, J.S., et al., Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat, 2002. 200(Pt 3): p. 249-58.
52. Nagata, S., et al., Efficient reprogramming of human and mouse primary
extra-embryonic cells to pluripotent stem cells. Genes Cells, 2009. 14(12): p. 1395-404.
|