![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:15 、訪客IP:18.119.131.131
姓名 彭思翔(Ssu-hsiang Peng) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 高折射率TNO透明導電薄膜及其應用於高反射鏡設計之研究
(Research of high refractive index transparent conducting Nb-doped TiO2 (TNO) films and its application on high reflection mirror)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 隨著科技蓬勃發展,光電產品如平面顯示器、半導體元件以及通訊產品,在全球的使用上都有急速成長之趨勢,世界各國亦積極投入大量的人力與財力研發光電相關領域之材料與產品。我國也將光電產業列為新興產業之ㄧ。其中透明導電膜是一種重要的光電材料。透明導電膜既有導電性,又在可見光區具有穿透性,在光電產業中廣泛應用在太陽能電池、液晶顯示器、觸控面板、飛機和汽車的導熱窗玻璃…等領域。目前最常使用的材料為ITO (In2O3:Sn),但含有稀有元素銦,在地殼中的含量非常稀少,因平面顯示器產業和製作薄膜太陽電池的透明電極之強力需求,導致價格不斷攀升。近年來主要針對不含銦之透明導電膜材料進行研究,發現鈮摻雜於二氧化鈦(TNO)有發展潛力成為新型透明導電膜材料,故本研究對TNO進行鍍製與分析其電特性與光學特性,並利用TNO具有高折射率之特性與AZO堆疊,設計並鍍製高反射率之透明導電膜。本研究成功鍍製出低電阻率之TNO透明導電膜,最佳摻雜鈮的濃度參數在施加功率為20~24 W於鈮靶材上時,鈦與鈮的原子數量比(Ti/Nb)為9~17,光學特性部份:可見光區穿透率約72 %、吸收小於10 %;電特性部分:電阻率約4.6×10-4 Ω-cm、遷移率約1.15 cm2/V-s、載子濃度約1.18×1022 cm-3。TNO與AZO堆疊高反射率之透明導電膜,反射率最高約90 %(中心波長為550 nm)、電阻率為1.88×10-3 Ω-cm。
摘要(英) Transparent conducting oxide (TCO) is a special material. It has the characteristic that like metals it can conduct electricity. Furthermore metal oxides are transparent in the visible light region. Presently, TCO is a key component in solar cells, organic light emitting displays (OLEDs), light emitting displays (LEDs), flat panel displays (FPDs), touch panels, etc. Sn-doped In2O3 (ITO) is a major component of the most widely used TCO, because it has excellent resistivity and transmittance in the visible light region. However, indium is in short supply worldwide, which pushes up the cost. This motivates researchers to develop alternatives to ITO. Furubayashi et al. have recently published results on the development of an In-free TCO material, Nb-doped anatase TiO2 (TNO). The material has development of a novel transparent conductive oxide. In this study, we deposited the Nb-doped TiO2 films, and then investigated the electrical and optical characteristics of the films. We used the high refractive index of characteristic of TNO films with AZO to design and deposit transparent conducting oxide of high reflectance. The low resistivity Nb-doped TiO2 films, the number of atoms of titanium and niobium ratio was from 9 to 17, were deposited when the DC power for the Nb target was from 20 to 24 W, with resistivity of ~4.6×10-4 Ω-cm, mobility of ~1.15 cm2/V-s, and carrier concentrations of ~1.18×1022 cm-3. The films exhibited an average optical transmittance of ~72 % and absorbance <10 % in the visible region. The transparent conducting oxide of high reflectance was deposited by using TNO and AZO. The highest reflectance was 90 % at 550 nm and resistivity was 1.88×10-3 Ω-cm.
關鍵字(中) ★ 高反射鏡
★ 透明導電膜
★ 鈮摻雜於二氧化鈦關鍵字(英) ★ transparent conducting oxide
★ high reflection mirror
★ TNO論文目次 摘要………………………………………………………………………………i
Abstract………………………………………………………………………….ii
致謝……………………………………………………………………………..iii
圖目錄…………………………………………………………………………..vi
表目錄………………………………………………………………………....viii
第一章 緒論.........................................................................................................1
1-1 透明導電膜簡介.....................................................................................1
1-2 透明導電膜的歷史.................................................................................2
1-3 透明導電膜的應用.................................................................................3
1-4 研究動機與目的.....................................................................................4
第二章 基礎理論.................................................................................................6
2-1 透明導電膜之理論.................................................................................6
2-2 金屬氧化物透明導電膜的導電性質[24]..............................................7
2-3 金屬氧化物透明導電膜的光學性質..................................................10
2-4 二氧化鈦(TiO2)特性............................................................................13
2-5 磁控濺鍍法(magnetron sputtering deposition)....................................14
第三章 實驗方法與步驟...................................................................................15
3-1 實驗流程...............................................................................................15
3-2 實驗設備...............................................................................................15
3-2-1 實驗材料........................................................................................15
3-2-2 鍍膜儀器設備................................................................................16
3-3 實驗步驟...............................................................................................16
3-4 量測與分析儀器...................................................................................17
3-4-1 可見光近紅外光光譜儀................................................................17
3-4-2 薄膜厚度量測儀(alpha step).........................................................18
3-4-3 四點探針(four point probe)...........................................................18
3-4-4 霍爾量測儀(Hall effect measurement)..........................................20
3-4-5 X光繞射儀(X-Ray Diffractometer, XRD).....................................22
3-4-6 能量分布光譜儀(Energy Dispersive Spectrometer, EDS)............22
第四章 實驗結果與討論...................................................................................24
4-1 實驗一:改變TNO薄膜內鈮摻雜濃度..............................................24
4-2 實驗二:改變TNO薄膜厚度..............................................................29
4-3 實驗三:改變TNO薄膜內鈮摻雜濃度(固定膜厚)...........................33
4-4 實驗四:設計高反射率之透明導電膜..............................................38
第五章 結論.......................................................................................................43
參考文獻.............................................................................................................46
參考文獻 [1] 楊明輝, “透明導電膜”, 藝軒圖書出版社, 第1頁, (2006).
[2] R. G. Gordon, “Criteria for choosing transparent conductors”, MRS Bulletin 25(8), 52-57 (2000).
[3] F. Streintz, Annals of Physics, (Leipzig) 9, 854 (1902).
[4] K. Badeker, Annals of Physics, (Leipzig) 22, 749 (1907).
[5] J.T. Littleton, U.S. Patent 118, 795 (1938).
[6] H.A. McMaster, U.S. Patent 429, 420 (1947).
[7] G. Rupprecht, “Untersuchungen der elektrischen und lichtelektrischen Leitfahigkeit dunner Indiumoxyd-schichten”, Z. Phys., 139, 504 (1954).
[8] 楊明輝, “透明導電膜”, 藝軒圖書出版社, 第53-72頁, (2006).
[9] K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors-A status review”, Thin Solid Films 102, 1 (1983).
[10] 楊明輝, “透明導電膜”, 藝軒圖書出版社, 第5頁, (2006).
[11] M. A. Gillispie, M. F. A. M. van Hest, M. D. Dabney, J. D. Perkins and D. S. Ginley, “Sputtered Nb- and Ta-doped TiO2 transparent conducting oxide films on glass”, J. Mater. Res. 22, 2832-2837 (2007).
[12] N. Yamada, T. Hitosugi, N. L. H. Hoang, Y. Furubayashi, Y. Hirose, T. Shimada and T. Hasegawa, “Fabrication of Low Resistivity Nb-doped TiO2 Transparent Conductive Polycrystalline Films on Glass by Reactive Sputtering”, Jpn. J. Appl. Phys. 46, 5275-5277 (2007).
[13] N. Yamada, T. Hitosugi, S. Nakao, J. Kasai, Y. Hirose, N. L. H. Hoang, T. Shimada and T. Hasegawa, “Growth of Transparent Conducting Nb-doped Anatase TiO2 Thin Films on Glass using Seed Layers”, Mater. Res. Soc. Symp. Proc. 1109, 1109-B02-02 (2009).
[14] Y. Sato, H. Akizuki, T. Kamiyama, and Y. Shigesato, “Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2-x target”, Thin Solid Films 516, 5758-5762 (2008).
[15] N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature Fabrication of Transparent Conducting Anatase Nb-doped TiO2 Films by Sputtering”, Appl. Phys. Express 1, 115001 (2008).
[16] M. A. Gillispie, F. A. M. van Hest, M. S. Dabney, J. D. Perkins and D. S. Ginley, “rf magnetron sputter deposition of transparent conducting Nb-doped TiO2 films on SrTiO3”, J. Appl. Phys. 101, 033125 (2007).
[17] T. Hitosugi, A. Ueda, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada and T. Hasegawa, “Fabrication of TiO2-based transparent conducting oxide films on glass by pulsed laser deposition”, Jpn. J. Appl. Phys. 46, L86 (2007).
[18] T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition”, Appl. Phys. Lett. 90, 212106 (2007).
[19] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, “A transparent metal: Nb-doped anatase TiO2”, Appl. Phys. Lett. 86, 252101 (2005).
[20] T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G. Kinoda, Y. Yamamoto, T. Shimada, and T. Hasegawa, “Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide”, Jpn. J. Appl. Phys. 44, L1063 (2005).
[21] S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase”, J. Appl. Phys. 102, 013701 (2007).
[22] F. Lagnel, B. Poumellec, J.P. Thomas, A. Ziani, and M. Gasgnier, “Preparation of amorphous thin films of (Ti,V)O2 and (Ti,Nb)O2 by R.F. sputtering”, Thin Solid Films 176, 111 (1989).
[23] 李玉華, 透明導電膜及其應用, 科儀新知, 12, 94 (1990).
[24] 楊明輝, “透明導電膜”, 藝軒圖書出版社, 第9-10頁, (2006).
[25] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing (1995).
[26] M. Chen, Z. L. Pei, X. Wang, X. H. Liu, C. Sun and L. S. Wen, “Intrinsic limit of electrical properties of transparent conductive oxide films” Journal of Physics D: Applied Physics 33, 2538-2548 (2000).
[27] J. H. Lee and B. O. Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method”, Thin Solid Films 426, 94 (2003).
[28] 楊明輝, 工業材料, 179, 134 (1999).
[29] M. Miyazaki, K. Sato, A. Mitsui and H. Nishimura, “Properties of Ga-doped ZnO films”, J. Non-Cryst. Solids, 218, 323 (1997).
[30] D.T. Wei, “Ion beam interference coating for ultralow optical loss”, Appl. Opt. 28(14), 2813-2816 (1989).
[31] H.S. Kim, D.C. Gilmer, S.A. Campbell, D.L. Polla, “Leakage currentand electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett. 69(25), 3860-3862 (1996).
[32] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Reports 48, 53 (2003).
[33] Michele Lazzeri, Andrea Vittadini, and Annabella Selloni, “Structure and energetics of stoichiometric TiO2 anatase surfaces”, Phys. Rev. B 63, 155409 (2001).
[34] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 第五版, 第296-304頁, (2004).
[35] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering”, Vacuum 59, 538 (2000).
[36] D.S. Richerby and A. Matthews, “Advanced Sruface Coatings:A Handbook of Surface Engineering”, Chapaman and Hall, New York, 92-100, (1991).
[37] S. Fujihara, Y. Ogawa, and A. Kasai, “Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing”, Chem. Mater. 16, 2965 (2004).
[38] Y. Natsume and H. Sakata, “Electrical and optical properties of zinc oxide films post-annealed in H-2 after fabrication by sol-gel process”, Mater. Chem. Phys. 78, 170 (2002).
[39] N. R. Aghamalyan, E. A. Kafadaryan, R. K. Hovsepyan, and S. I. Petrosyan, “Absorption and reflection analysis of transparent conductive Ga-doped ZnO films”, Semicond. Sci. Tech. 20, 80 (2005).
[40] 楊明輝, “透明導電膜”, 藝軒圖書出版社, 第23頁, (2006).
[41] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Tech. 20, S35-S44 (2005).
[42] R. D. Shannon, “Revised effective ionic radii in halides and chalcogenides”, Acta Crystallographica, A32, 751-767 (1976).
指導教授 李正中(Cheng-chung Lee) 審核日期 2010-7-27 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare