參考文獻 |
[1] R. W. Wood, On remarkable case uneven distribution of light in a diffraction grating spectrum, Phil. Magm., vol. 4, pp. 396-402 (1905).
[2] R. H. Ritchie, Plasma losses by fast electron in thin films, Phys. Rev., vol. 106, pp. 640-643(1957).
[3] J. Powell and J. B. Swan, Effect of oxidation on the characteristics loss spectra of alumimum and magnesium, Phys Rev, vol. 118, pp. 640-643 (1960).
[4] K. Welford, The method of attenuated total reflection, Instit. Phys., pp. 25-78 (1987).
[5] A. Otto, Excitation of surface plasma waves in silver by the method of frustrated total reflection, Z. Physik, vol. 216, pp. 398-410 (1968).
[6] E. Krestschmann, The determination of the optical constants of metals by excitation of surface plasmons, Z. Phys, vol. 241, pp. 313-32 (1971).
[7] Z. Salamon, H. A. Macleod, and G. Tollin, Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein system. II:Applications to biological systems, BBA-Bioenergetics, vol. 1331, pp. 131-152 (1997).
[8] P. I. Nikitin, A. A. Beloglazov, and V. E. Kochergin. e. al, Surface plasmon resonance interfreometry for biological and chemical sensing, Sensors Actuator B-Chem., vol. 54, pp. 43-50 (1999).
[9] R. P. H. Kooyman, H. Kolkman, J. V. Gent, and J. Greve, Surface plasmon resonance immunosensors: sensitivity considerations, Anal. Chim. Acta, vol. 213, pp. 35-45 (1988).
[10] J. Homola and S. S. Yee, Surface plasmon resonance senaors based on diffraction gratings and prism couplers: sensitivity comparison, Sensors Actuator B-Chem., vol. 54, pp. 16-24 (1999).
[11] B. Liedberg, C. Nylander, and I. Lundstrom, Surface plasmon resonance for gas detection and biosensing, Sensors Actuator B-Chem., vol. 4, pp. 299-304, (1983).
[12] M. A. Cooper, Optical biosensors in drug discovery, Nat. Rev. Drug. Discov., vol. 1, pp. 515-528 (2002).
[13] C.J. Lockwood. and E. Kuczynski., Risk stratification and pathological mechanisms in preterm delivery, Paediatr Perinat Epidemiol, vol. 15 pp. 78-89 (2001).
[14] http://www.ffntest.com/hcp/science_fetal/about_fetal.html.
[15] M. M. G. Leeflang, J. S. Cnossen, J. A. M. van der Post, B. W. J. Mol, K. S. Khan, and G. ter Riet, Accuracy of fibronectin tests for the prediction of pre-eclampsia: a systematic review, Eur. J. Obstet. Gyn. R. B., vol. 133, pp. 12–19 (2007).
[16] M. I. Tekesin, M. S. Marek, M. L. Hellmeyer, M. D. Reitz, and M. S. Schmidt, Assessment of Rapid Fetal Fibronectin in Predicting Preterm Delivery, Obstet. Gynecol., vol. 105, pp. 280-284 (2005).
[17] V. Smith, D. Devane, C. M. Begley, M. Clarke, and S. Higgins, A systematic review and quality assessment of systematic reviews of fetal fibronectin and transvaginal length for predicting preterm birth, Eur. J. Obstet. Gyn. R. B., vol. 133, pp. 134-142 (2007).
[18] H. Tan, S. W. Wen, X. K. Chen, K. Demissie, and M. Walker, Early prediction of preterm birth for singleton, twin and triplet pregnancies, Eur. J. Obstet. Gyn. R. B., vol. 131, pp. 132-137 (2007).
[19] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin (1988).
[20] 顏嘉宏, 表面電漿共振系統之相位擷取與分析, 國立中央大學光電科學與工程學系研究所碩士論文 (2009).
[21] 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊, 廿八卷二期 (2006).
[22] 耿繼業、何建娃, 幾何與物理光電實驗, 儒林出版社 (2001).
[23] D. Malacara, Optical Shop Testing, Wiley (2007).
[24] P. Hariharan, B. F. Oreb, and T. Eiju, Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm, Appl. Opt., vol. 26, pp. 2504-2506 (1987).
[25] C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, Winnie. W., Y. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging, Apt. Opt., vol. 46, pp. 2325-2332 (2007).
[26] http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=1000100.
[27] http://www.thorlabs.us/.
[28] M. Daimon and A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region, App. Opt., vol. 46, pp. 3811-3820 (2007).
|