博碩士論文 974203038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.135.185.96
姓名 鄭義穎(Yi- ying Jheng)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 結合社會網路分析與網絡結構探勘偵測網路拍賣哄抬評價之共犯群體
(Combing Social Network Analysis with Web Structure Mining for detecting collusive fraud group in online auction)
相關論文
★ 網路合作式協同教學設計平台-以國中九年一貫課程為例★ 內容管理機制於常用問答集(FAQ)之應用
★ 行動多重代理人技術於排課系統之應用★ 存取控制機制與國內資安規範之研究
★ 信用卡系統導入NFC手機交易機制探討★ App應用在電子商務的推薦服務-以P公司為例
★ 建置服務導向系統改善生產之流程-以W公司PMS系統為例★ NFC行動支付之TSM平台規劃與導入
★ 關鍵字行銷在半導體通路商運用-以G公司為例★ 探討國內田徑競賽資訊系統-以103年全國大專田徑公開賽資訊系統為例
★ 航空地勤機坪作業盤櫃追蹤管理系統導入成效評估—以F公司為例★ 導入資訊安全管理制度之資安管理成熟度研究-以B個案公司為例
★ 資料探勘技術在電影推薦上的應用研究-以F線上影音平台為例★ BI視覺化工具運用於資安日誌分析—以S公司為例
★ 特權帳號登入行為即時分析系統之實證研究★ 郵件系統異常使用行為偵測與處理-以T公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著網路拍賣的普及,網路拍賣詐欺也逐漸變成犯罪的手法,其常見的手法便是不肖賣家透過拍賣網站所具有高度匿名與進入門檻低的特性,進行帳號與帳號之間相互哄抬評價,以創造高評價分數的假像來引誘買家,此種情形屢見不鮮。但之前大多數的研究僅利用社會網路分析(Social Network Analysis)來偵測哄抬評價之共犯群體,大都不能完整的偵測出整體詐欺群體的關係且非線上即時偵測。
因此,本研究針對此種詐欺共犯群體,提出一個模組化的詐欺共犯群體偵測流程,以彌補網路拍賣評價系統之不足。首先,我們利用K-Core分群演算法的概念來設計我們代理人搜尋路徑以達成可完整與立即地找出潛在的共犯群體;第二,透過本研究定義的資料前處理動作,進行資料清理;第三,使用PageRank演算法找出在群體中具有權威性與重要性的帳號,並計算其有效的指標;第四,使用Auction Fraud Rank演算法計算第二個有效的指標,此演算法是修改自PageRank演算法其目的是為了能夠讓演算法同時考量網絡結構性與帳號本身潛在的危險度;最後,我們使用調適性類神經推論系統(Adaptive-Network-based Fuzzy Inference System, ANFIS)結合社會網路分析與網路結構探勘(Web Structure Mining)來偵測群體中每個帳號的危險性。本研究使用真實案例的方式來檢驗所提出的系統架構是否可以有效幫助使用者找出潛在的共犯群體。
摘要(英) With the popularity of the online purchase, online auction fraud has become a kind of criminal in our daily life. The most common fraud method is that auctioneers use the characteristics of high anonymity and the lower thresholds of the e-Auctions to create multiple accounts and manipulate their reputations. In this way, they can deceive the buyer by their high reputations. But most of the previous researches focus on only using the Social Network Analysis to detect the inflated reputation behaviors of the auction fraud group. Thus, it can’t detect the relationship of whole group fraudsters and the execution process should not be Online real-time.
Therefore, the research proposes a new process which can detect collusive group: First, we use the concept of k-core clustering algorithm to design our searching path for Agent in order to capture the potential collusive group completely and immediately. Second, we define a data preprocessing to clean-up unrelated data. Third, we use the PageRank algorithm to discover authoritative and important accounts in the group and calculate the useful indicator. Four, Auction Fraud Rank algorithm, an extension to the standard PageRank algorithm, takes into account the importance of both Web structure and the potential risk of account in order to calculate the second useful indicator. Finally, we use ANFIS to combine SNA and WSN to detect the risk of each account in the group. In the research, we use real cases to validate whether the proposed system can effectively help auctioneers to find the potential collusive group.
關鍵字(中) ★ 調適性類神經模糊推論系統
★ 社會網路分析
★ 線上拍賣
★ 網絡結構探勘
★ 詐欺共犯群體
★ PageRank演算法
關鍵字(英) ★ PageRank Algorithm
★ Fraud Group Detection
★ K-Core
★ Social Network Analysis
★ Online Auction
★ Web Structure Mining
★ ANFIS
論文目次 目 錄
摘 要 i
Abstract iii
目 錄 iv
圖目錄 viii
表目錄 1
公式目錄 1
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究方法 3
1.5 論文架構 4
第二章 文獻探討 6
2.1 網路拍賣詐欺成因與特性 6
2.2 拍賣詐欺分類 7
2.3 社會網路分析 10
2.3.1 社會網路分析分群的指標 10
2.4 拍賣詐欺偵測方法 12
2.5 詐欺共犯群體的特性 14
2.6 網絡探勘(Web Mining) 15
2.6.1 PageRank 16
2.7模糊理論 18
2.7.1模糊推論系統 19
2.7.2模糊化介面(fuzzification interface) 19
2.7.3知識庫(Knowledge Base) 20
2.7.4決策邏輯單元(decision making logic) 22
2.7.5解模糊化介面(defuzzification interface) 24
2.8調適性類神經模糊推論系統(ANFIS) 24
2.8.1 學習演算法 26
2.9小結 28
第三章 研究方法 29
3.1研究假設 29
3.2系統架構 30
3.3 資料蒐集 31
3.3.1 資料來源 31
3.3.2 網絡結構搜尋代理人 33
3.4 資料前處理 38
3.5 PageRank演算法 40
3.6 Auction Fraud Rank演算法 42
3.7 調適性類神經模糊推論系統架構(Adaptive-Network-based Fuzzy Inference System, ANFIS) 44
3.7.1定義輸入、輸出變數 44
3.7.2歸屬函數的決定 45
3.7.3 模糊規則的決定 45
3.7.4 學習演算法 47
第四章 實驗結果與討論 48
4.1 建置ANFIS模型與驗證ANFIS模型 48
4.2 系統實作與案例說明 62
4.3 相關研究比較 66
4.4 系統效率評估 69
第五章 結論與未來研究方向 72
5.1 結論 72
5.2 未來研究方向 73
參考文獻 75
中文部分 75
英文部分 75
網頁部分 82
參考文獻 [1] 張博欽. (2005).線上拍賣賣家信任、競標意圖與競價結果—以法、比、港、新四國 eBay 拍賣為例.未發表的碩士論文,花蓮:國立東華大學國際企業學系。
[2] 曾百川. (2005).網路詐欺犯罪歷程之質化研究.未發表的碩士論文,桃園:國立中央警察大學犯罪防治研究所。
[3] 王俊程, 邱垂鎮, & 葛煥元. (2005).以交易記錄的社會網絡結構建立線上拍賣哄抬評價的偵測指標.資訊管理學報, 12(4), 143-184。
[4] 葉懿慧. (2008).以社會網路分析方法偵測線上拍賣網站的詐欺共犯群體.未發表的碩士論文, 桃園:國立中央大學資訊管理研究所
英文部分
[5] Ba, S., Stallaert, J., Whinston, A. B., & Zhang, H. (2005). Choice of transaction channels: The effects of product characteristics on market evolution. Journal of Management Information Systems, 21(4), 173-197.
[6] Borgatti, S. What is social network analysis? Retrieved June 06, 2010, from http://www.analytictech.com/networks/whatis.htm
[7] Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine* 1. Computer Networks and ISDN Systems, 30(1-7), 107-117.
[8] Chau, D., Pandit, S., & Faloutsos, C. (2006). Detecting fraudulent personalities in networks of online auctioneers. ECML/PKDD, , 103-114.
[9] Cho, J., Garcia-Molina, H., & Page, L. (1998). Efficient crawling through URL ordering. Computer Networks and ISDN Systems, 30(1-7), 161-172.
[10] Chua, C. E. H., Wareham, J., & Robey, D. (2002). Anti-fraud mechanisms in internet auctions: The roles of markets, hierarchies and communities of practice. International Conference on Information Systems (ICIS),
[11] Chua, C. E. H., Wareham, J., & Robey, D. (2007). The role of online trading communities in managing internet auction fraud. MIS Quarterly, 31(4), 759-781.
[12] Chua, C., & Wareham, J. (2004). Fighting internet auction fraud: An assessment and proposal. Computer, 37(10), 31-37.
[13] Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future directions. ACM Computing Surveys (CSUR), 28(4), 643.
[14] Conte, R., & Paolucci, M. (2003). Social cognitive factors of unfair ratings in reputation reporting systems. IEEE/WIC International Conference on Web Intelligence, 2003. WI 2003. Proceedings, 316-322.
[15] Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the world wide web. Ninth IEEE International Conference on Tools with Artificial Intelligence, 1997. Proceedings. 558-567.
[16] Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data preparation for mining world wide web browsing patterns. Knowl.Inf.Syst., 1(1), 5-32.
[17] Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10), 1407-1424.
[18] Dong, F., Shatz, S. M., & Xu, H. (2009a). Combating online in-auction fraud: Clues, techniques and challenges. Computer Science Review, 3(4), 245-258.
[19] Dong, F., Shatz, S. M., & Xu, H. (2009b). Inference of online auction shills using dempster-shafer theory. Proc. of the 6th International Conference on Information Technology: New Generations (ITNG 2009, 908-914.
[20] Everett, M. G. (1982). Graph theoretic blockings k-plexes and k-cutpoints. Journal of Mathematical Sociology, 9(75-84), 448.
[21] Everett, M. G., & Borgatti, S. P. (1993). An extension of regular colouring of graphs to digraphs, networks and hypergraphs. Social Networks, 15(23), 7-254.
[22] Everett, M. G., & Borgatti, S. P. (1998). Analyzing clique overlap. Connections, 21(1), 49-61.
[23] Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239.
[24] Garton, L., Haythornthwaite, C., & Wellman, B. (1999). Studying on-line social networks. Doing Internet Research: Critical Issues and Methods for Examining the Net, , 75.
[25] Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside,
[26] He, M., Jennings, N., & Prugel-Bennett, A. (2004). An adaptive bidding agent for multiple english auctions: A neuro-fuzzy approach. 2004 IEEE International Conference on Fuzzy Systems, 2004. Proceedings, , 3
[27] Jamali, M., & Abolhassani, H. (2006). Different aspects of social network analysis. IEEE/WIC/ACM International Conference on Web Intelligence, 2006. WI 2006, 66-72.
[28] Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics,
[29] Jenamani, M., Zhong, Y., & Bhargava, B. (2007). Cheating in online auction-towards explaining the popularity of english auction. Electronic Commerce Research and Applications, 6(1), 53-62.
[30] Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications Prentice Hall Upper Saddle River, NJ.
[31] Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy logic controller--part I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404-418.
[32] Mamdani, E., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13.
[33] Mislove, A., Gummadi, K. P., & Druschel, P. (2006). Exploiting social networks for internet search. BURNING, , 79.
[34] Pandit, S., Chau, D. H., Wang, S., & Faloutsos, C. (2007). Netprobe: A fast and scalable system for fraud detection in online auction networks. Proceedings of the 16th International Conference on World Wide Web, 210.
[35] Pujol, J. M., Sangüesa, R., & Delgado, J. (2002). Extracting reputation in multi agent systems by means of social network topology. Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, 467-474.
[36] Rubin, S., Christodorescu, M., Ganapathy, V., Giffin, J. T., Kruger, L., Wang, H., et al. (2005). An auctioning reputation system based on anomaly. Proceedings of the 12th ACM Conference on Computer and Communications Security, 279.
[37] Shaw, W. (1997). Performance standards and evaluations in IR test collections: Cluster-based retrieval models. Information Processing & Management, 33(1), 1-14.
[38] Srivastava, J., Cooley, R., Deshpande, M., & Tan, P. N. (2000). Web usage mining: Discovery and applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter, 1(2), 23.
[39] Sugeno, M., & Kang, G. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28(1), 15-33.
[40] Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15, 116-132.
[41] Tokeley, K. (2007). Vendor bidding on online auctions. Journal of Consumer Policy, 30(2), 137-150.
[42] Trevathan, J., & Read, W. (2007). Detecting collusive shill bidding. Information Technology, 2007. ITNG'07. Fourth International Conference on, 799-808.
[43] Trevathan, J., & Read, W. (2009). Detecting shill bidding in online english auctions. Handbook of Research on Social and Organizational Liabilities in Information Security,
[44] Tsukamoto, Y. (1979). An approach to fuzzy reasoning method. Advances in Fuzzy Set Theory and Applications, , 137-149.
[45] Wang, J. C., & Chiu, C. C. (2008). Recommending trusted online auction sellers using social network analysis. Expert Systems with Applications, 34(3), 1666-1679.
[46] Wang, J. C., & Chiu, C. (2005). Detecting online auction inflated-reputation behaviors using social network analysis. Annual Conference of the North American Association for Computational Social and Organizational Science,
[47] Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge Univ Pr.
[48] Wellman, B. (1996). For a social network analysis of computer networks: A sociological perspective on collaborative work and virtual community. Proceedings of the 1996 ACM SIGCPR/SIGMIS Conference on Computer Personnel Research, 11.
[49] Xu, H., & Cheng, Y. T. (2007). Model checking bidding behaviors in internet concurrent auctions. International Journal of Computer Systems Science & Engineering, 22(4), 179-191.
網頁部分
[50] 資策會MIC.2010年5月31日取自http://mic.iii.org.tw/aisp/
[51] 雅虎拍賣.2010年5月31日取自http://tw.bid.yahoo.com/
[52] 露天拍賣.2010年5月31日取自http://www.ruten.com.tw/
[53] The internet crime complaint center (IC3).2010年5月31日取自http://www.ic3.gov/default.aspx
指導教授 林熙禎(Shi-Jen Lin) 審核日期 2010-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明