博碩士論文 974203048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.221.175.164
姓名 吳宗翰(Tsunghan Wu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 計算智慧及複數模糊集於適應性影像處理之研究
(A Computational Intelligence Based Approach with Complex Fuzzy Sets to Adaptive Image Noise Processing)
相關論文
★ 變數選擇在智慧型系統與應用之研究★ 智慧型系統之參數估測研究─一個新的DE方法
★ 合奏學習式智慧型系統在分類問題之研究★ 複數模糊類神經系統於多類別分類問題之研究
★ 融入後設認知策略的複數模糊認知圖於分類問題之研究★ 分類問題之研究-以複數型模糊類神經系統為方法
★ 智慧型差分自回歸移動平均模型於時間序列預測之研究★ 智慧型模糊類神經計算模式使用複數模糊集合與ARIMA模型
★ Empirical Study on IEEE 802.11 Wireless Signal – A Case Study at the NCU Campus★ 自我建構式複數模糊ARIMA於指數波動預測之研究
★ 資料前處理之研究:以基因演算法為例★ 針對文字分類的支援向量導向樣本選取
★ 智慧型區間預測之研究─以複數模糊類神經、支持向量迴歸、拔靴統計為方法★ 複數模糊類神經網路在多目標財經預測
★ 智慧型模糊類神經計算使用非對稱模糊類神經網路系統與球型複數模糊集★ 複數型模糊類神經系統及連續型態之多蟻群演化在時間序列預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們提出兩種適應性濾波器設計方法,分別為複數類神經模糊系統(Complex Neuro-Fuzzy System, CNFS)濾波器與自我組織複數類神經模糊系統(Self-Organizing Complex Neuro-Fuzzy System, SOCNFS)濾波器,並將它們應用於解決適應性影像雜訊消除(adaptive image noise cancelling, AINC)的問題上。在濾波器設計上,我們主要分為兩個部份進行探討,第一部份為濾波器系統建構,第二部份為系統參數調整。系統建構方面,我們以Takagi-Sugeno (T-S) 模糊If-Then規則作為CNFS與SOCNFS的系統架構,並以複數模糊集合(Complex Fuzzy Set, CFS)做為模糊規則的歸屬函數。系統參數調整方面,我們進一步設計了一種PSO-RLSE複合式學習方法用於調整濾波器內的參數,此方法結合了著名的粒子群最佳化(Particle Swarm Optimization, PSO)方法與遞迴最小平方估計法(Recursive Least-Square Estimation, RLSE)。PSO用來調整濾波器的前鑑部參數,RLSE則用於調整濾波器的後鑑部參數。PSO-RLSE學習方法具有快速的學習能力與高度的執行效率。而我們所提出的CNFS與SOCNFS濾波器對於非線性函數均具有絕佳的映射能力。SOCNFS則是基於CNFS的概念並結合自我組織機制所設計出來的。將用來訓練SOCNFS的訓練數據進行分群,透過分群結果自動決定系統中的規則數以及初始化的系統參數。這種方式不僅可以減少人為介入因素,同時也為系統內模糊規則數的制定提出了有力的數理依據。
在AINC應用中,我們所提出的CNFS濾波器與SOCNFS濾波器會以間接函數逼近(indirect function approximation)的方式進行雜訊通道的動態行為模擬。經由這種方式,受汙染的影像將可被復原成極近似於原始影像的乾淨影像。我們分別以數張影像與四個範例測試CNFS與SOCNFS濾波器的雜訊消除效果,並得到出色的復原影像品質。
摘要(英) In this thesis, we propose two novel adaptive filters, complex neuro-fuzzy system (CNFS) and self-organizing complex neuro-fuzzy system (SOCNFS), and apply them to the problem of adaptive image noise cancelling (AINC). Complex fuzzy sets (CFS) and Takagi-Sugeno (T-S) fuzzy If-Then rules are used to shape the structure of both the CNFS and SOCNFS. A CFS is the fuzzy set whose membership is complex-valued state within the unit disk in complex plane. We devise a hybrid optimization method to adapt the adaptive filters for the AINC problem. The hybrid learning method is called the PSO-RLSE method, including the well-known particle swarm optimization (PSO) method and the famous recursive least square estimation (RLSE) method. They cooperate in hybrid way during the learning process for the adaptive filters. The PSO is used to update the parameters of premise part of the filters while the consequent part is updated by the RLSE. The PSO-RLSE learning method is very efficient for fast learning. The proposed CNFS and SOCNFS filters possess excellent nonlinear mapping ability because CFS can bring in complex memberships in fuzzy inference computing for input-output mapping capability. On the other hand, with the mechanism of self-organization, the SOCNFS can generate fuzzy rules in the form of clusters and learn its parameters by the stimulation of input/output training data to have its initial If–Then rules for application. In the AINC application, the proposed CNFS and SOCNFS can perform indirect function approximation to mimic the dynamic behaviour of unknown noise channel in such a way that a corrupted image may be adaptively restored as clear to its original version as possible. Few examples with several images are used to test the proposed approachs, by which excellent performance for image restoration has been observed.
關鍵字(中) ★ 遞迴最小平方估計
★ 自我組織
★ 分群
★ 複數模糊集合
★ 影像復原
★ 適應性影像雜訊消除
★ 複數類神經模糊系統
★ 粒子群最佳化
關鍵字(英) ★ image restoration
★ RLSE
★ adaptive image noise cancelling (AINC)
★ PSO
★ complex neuro-fuzzy system
★ self-organization
★ clustering
★ complex fuzzy set
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章、 緒論 1
1.1 研究背景 1
1.2 研究方法與動機 1
1.3 研究目的 4
1.4 論文架構 5
第二章、 文獻探討 6
2.1 數位影像資料格式與取樣量化 6
2.2 常用雜訊消除濾波器 9
2.3 適應性雜訊消除問題 12
2.4 影像品質評估機制 15
第三章、適應性濾波器設計方法 17
3.1 複數類神經模糊適應性濾波器 17
3.1.1 複數模糊集合 17
3.1.2 T-S模糊推理系統架構 19
3.2 自我組織複數類神經模糊適應性濾波器 23
3.2.1 以分群為基礎的自我組織機制 23
3.2.2 模糊C均值分裂演算法 26
3.3 複合式學習演算法 29
3.3.1 粒子群最佳化演算法 29
3.3.2 遞迴最小平方估計法 30
3.3.3 PSO-RLSE複合式學習演算法 32
第四章、 適應性濾波器應用於影像雜訊消除 34
第五章、 CNFS與SOCNFS進行影像雜訊消除 38
5.1 應用CNFS適應性濾波器解決AINC問題 38
5.2 應用SOCNFS適應性濾波器解決AINC問題 61
5.3 實驗數據分析與討論 88
第六章、結論與未來工作 92
參考文獻 93
簡歷 96
參考文獻 [1] D. Van De Ville, M. Nachtegael, D. Van der Weken, E. E. Kerre, W. Philips, and I. Lemahieu, “Noise reduction by fuzzy image filtering,” IEEE Transactions on Fuzzy Systems, vol. 11, pp. 429-436, 2003.
[2] G. A. Mastin, “Adaptive filters for digital image noise smoothing-An evaluation,” Computer Vision, and Image Processing, vol. 31, pp. 103-121, 1985.
[3] B. Smolka, R. Lukac, A. Chydzinski, K. N. Plataniotis, and W. Wojciechowski, “Fast adaptive similarity based impulsive noise reduction filter,” Real-Time Imaging, vol. 9, pp. 261-276, 2003.
[4] R. C. Gonzalez and RE Woods. Digital Image Processing, Addison-Wesley Publishing Company, New York, 1993.
[5] C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy inference network and its applications,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 12-32, 1998.
[6] S. Paul and S. Kumar, “Subset hood-product fuzzy neural inference system (SuPFuNIS), ” IEEE Transactions on Neural Networks, vol. 13, pp. 578-599, 2002.
[7] V. N. Vapnik, S. Golowich, and A. J. Smola, “Support vector method for function approximation, regression estimation, and signal processing,” Advances in Neural Information Processing Systems, vol. 9, pp. 281-287, 1997.
[8] V. V. Sergeev, V. N. Kopenkov, and A. V. Chernov, “Comparative Analysis of Function Approximation Methods in Image Processing ,” Pattern Recognition and image analysis, vol. 17, pp. 217-221, 2007.
[9] W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modelling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998.
[10] A. Kandel, D. Ramot, R. Milo, and M. Friedman, "Complex Fuzzy Sets," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 171–186, 2002.
[11] S. Dick, "Toward complex fuzzy logic," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 405-414, 2005.
[12] D. Ramot, M. Friedman, G. Langholz, and A. Kandel, "Complex fuzzy logic," IEEE Transactions on Fuzzy Systems, vol. 11, pp. 450-461, 2003.
[13] R. C. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” Proceeding of the Sixth International Symposium on Micro Machine and Human Science, vol. 43, pp. 39-43, 1995.
[14] P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences,” Lecture Notes in Computer Science, pp. 601-610, 1998.
[15] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE transactions on Evolutionary Computation, vol. 6, pp. 58-73, 2002.
[16] X. Hu and R. Eberhart, “Multiobjective optimization using dynamic neighborhood particle swarm optimization,” Proceeding of the Evolutionary Computation, pp. 1677-1681, 2002.
[17] Y. Dong, J. Tang, B. Xu, and D. Wang, “An application of swarm optimization to nonlinear programming,” Computers and Mathematics with Applications, vol. 48, pp. 1655-1668, 2005.
[18] G. C. Goodwin and R. L. Payne, Dynamic system identification: Experiment design and data analysis: Academic Press, 1997.
[19] S. Pena, R. S. Alonso, Anigstein, and B. A. Cone, “Robust optimal solution to the attitude/force control problem,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, pp. 784-792, 2000.
[20] I. Bilik and J. Tabrikian, “Radar target classification using doppler signatures of human locomotion models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, pp. 1510-1522, 2007.
[21] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: A model,” Science, vol. 233, pp. 625-633, 1986.
[22] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, Inc., New York, 1994.
[23] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Transactions. Comput., vol. 43, pp. 1329-1333, 1994.
[24] J. A. Dickerson and B. Kosko, “Fuzzy function approximation with ellipsoidal rules,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 26, pp. 542-560, 1996.
[25] Y. Yang, J. J. Shi, J. E. Harry, J. Proctor, C. P. Garner, and M. G. Kong, "Multilayer plasma patterns in atmospheric pressure glow discharges," IEEE Transactions on Plasma Science, vol. 33, pp. 302-303, 2005.
[26] T. Nakano and T. Suda, “Self-organizing network services with evolutionary adaptation,” IEEE Transactions on Neural Networks, vol. 16, pp. 1269-1278, 2005.
[27] G. Polzlbauer, T. Lidy, and A. Rauber, “Decision manifolds—a supervised learning algorithm based on self-organization,” IEEE Transactions on Neural Networks, vol. 19, pp. 1518-1530, 2008.
[28] A. H. Tan, N. Lu, and D. Xiao, "Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback," IEEE Transactions on Neural Networks, vol. 19, pp. 230-244, 2008.
[29] F. Russo, “Noise removal from image data using recursive neurofuzzy filters,” IEEE Transactions on Instrumentation and Measurement, vol. 49, pp. 307-314, 2000.
[30] Widrow, J. R. Glover, and J.M. McCool, “Adaptive noise cancelling: Principles and application”, Proc. IEEE, vol. 63, pp. 1692-1730, 1975.
[31] Chunshien Li, Kuo-Hsiang. Cheng, “Soft Computing Approach to Adaptive Noise Filtering”, IEEE Proceedings Conference on Cybernetics and Intelligent Systems, Singapore, 2004.
[32] B. Widrow and S. D. Stearns, “Adaptive signal processing,” Prentice Signal Processing Series, pp.474, 1985.
[33] Gonzalez, R. C. “Richard. E. Woods,“Digital Image Processing.” 2nd International Edition Prentice Hall, 2002.
[34] A. C. Zelinski, M. Puschel, S. Misra, and J. C. Hoe “Automatic cost minimization for multiplierless implementations of discrete signal transforms,” IEEE ICASSP, vol. 5, pp. 221-225, 2004.
[35] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing, Prentice Hall Upper Saddle River, NJ, 1997.
[36] H. Sun, S. Wang, and Q. Jiang, “FCM-based model selection algorithms for determining the number of clusters,” Pattern recognition, vol. 37, pp. 2027-2037, 2004.
[37] K. J. Astrom and B. Wittenmark, Adaptive control: Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1994.
指導教授 李俊賢(Chunshien Li) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明