![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:11 、訪客IP:18.221.99.121
姓名 張澤穆(Ze-Mu Chang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 應用於室內極高速傳輸無線傳輸系統之 設計與評估
(Design and Evaluation of Gigabit Indoor Wireless Communication Systems )相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在現今的生活中,由於數位家庭的崛起,造成電腦、家電廠商無不爭相投入搶攻家庭娛樂結合數位生活這塊市場大餅,全力促使自家產品成為消費者家中的核心「平台」。由於傳輸高畫質的影音服務需要極高的傳輸率(gigabit),以目前已普及的無線通訊規格並無法支援,所以還是以有線(HDMI)的為主。為了支援這些服務,各無線通訊標準無不朝著高傳輸率來發展,希望能以無線取代有線,透過無線通訊打破空間的規範,使得在家裡的任何地方都能享受到數位生活的方便,並美化家庭的環境。
本論文在於實現無線傳輸模組,基於IEEE 802.11n的系統上來訂立一個新規格來達到傳送高畫質影像的速度需求。此無線通訊基頻收發機將以多輸入多輸出之正交分頻多工(MIMO-OFDM)來實現,操作在lower UNII band,最多使用160MHz的頻寬,再搭配四根傳輸天線及四根接收天線的傳輸率最高可達2.5Gbps。發送端的部分會有256點及512點前置符元的設計,此設計有考量到PAPR和使接收段的訊號偵測及同步的部分易於達成。接收端的部分則有三個主要的任務,粗略同步、殘餘CFO估測及補償還有通道估測與多輸入多輸出偵測。粗略同步在於得到正確的符元邊界以得到精確的FFT的window還有CFO粗估。在訊號進入頻域後繼續的追蹤殘餘的CFO並補償,補償完後就可以開始偵測訊號以重新取回資料。以上的任務在系統模擬的部分均可得到我們所提出的方法對於整體效能有大幅度的提升。
摘要(英) This thesis presents a MIMO-OFDM baseband transceiver design for indoor gigabit wireless communication systems. The proposed system uses 5 GHz carrier frequency with bandwidth up to 160 MHz. Both the transmitter and the receiver support 4 antennas. At the receiver, we design symbol timing detector, carrier frequency offset first acquisition and subsequent tracking mechanisms, channel estimation and MIMO detection. Simulation results show that the proposed symbol timing detection algorithm is more precise than the conventional algorithm. The CFO tracking mechanism also helps to improve the severe degradation in MIMO detection due to the residual synchronization error. In addition, by exploiting low-correlated spatial diversity, this system can combat highly frequency-selective fading channels for wide-band applications. We thus achieve satisfying system performance with 64-QAM constellation for 2.5-Gbps transmission rate.
關鍵字(中) ★ 收發機
★ 接收機
★ 高速傳輸
★ 無線區域網路
★ 基頻
★ 無線通訊關鍵字(英) ★ gigabit transmission
★ baseband receiver
★ MIMO-OFDM
★ high throughput
★ Wireless LAN論文目次 目錄 i
圖示目錄 iii
表格目錄 vi
第一章 緒論 1
1.1 研究動機(Motive) 1
1.2 論文組織(Organization) 4
第二章 多輸入多輸出-正交分頻多工發送機 5
2.1 正交分頻多工原理(Principle of OFDM) 5
2.1.1 正交分頻多工調變與解調(OFDM Modulation and Demodulation) 5
2.1.2 保衛區間與循環字首(Guard Interval and Cyclic Prefix) 11
2.2 系統規格(System Specification) 14
2.3 發送機架構(Transmitter Architecture) 15
2.3.1 前置序列插入(Preamble Insertion) 16
2.3.2 星座圖對應(Constellation Mapping) 25
2.3.3 多輸入多輸出編碼(MIMO Encoding) 27
2.3.4 領航次載波配置(Pilot Allocation) 28
2.3.5 正交分頻多工調變(OFDM Modulation) 28
2.4 封包格式設計(Packet Formation) 30
2.5 傳輸速率(Transmission Rate) 31
第三章 基頻通道模型 33
3.1 多輸入多輸出通道(MIMO Channel) 34
3.1.1 功率延遲分布(Power Delay Profile) 35
3.1.2 方位角參數介紹(Introduction of Angular Parameters) 37
3.1.3 通道衰減相關性(Correlation) 39
3.2 多路徑衰減通道(Multipath Fading Channel) 42
3.3 加成性白高斯雜訊(Additive White Gaussian Noise) 44
3.4 載波頻率偏移(Carrier Frequency Offset) 45
3.5 取樣時脈偏移(Sampling Clock Offset) 46
第四章 多輸入多輸出-正交分頻多工接收機 49
4.1 接收機架構(Receiver Architecture) 49
4.2 封包偵測(Packet Detection) 51
4.3 粗略同步(Coarse Synchronization) 54
4.3.1 符元邊界偵測(Symbol Boundary Detection) 54
4.3.2 小數載波頻率偏移估測(Fractional CFO Estimation) 64
4.3.3 小數載波頻率偏移補償(Fractional CFO Compensation) 67
4.3.4 硬體共享及流程(Hardware Sharing and Scheduling) 68
4.4 精確同步(Fine Synchronization) 70
4.4.1 殘餘載波頻率偏移追蹤(Residual CFO Tracking) 70
4.4.2 取樣時脈偏移追蹤(SCO Tracking) 78
4.4.3 殘餘載波頻率偏移及取樣時脈偏移補償(Residual CFO and SCO Compensation) 80
4.5 多輸入多輸出訊號偵測(MIMO Detection) 80
4.6 系統效能(System Performance) 84
第五章 結論與展望 87
參考文獻 88
參考文獻 [1.1] Part15.3:Wireless Medium Access Control(MAC) and Physical Layer(PHY)
Specifications for High Rate Wireless Personal Area Networks (WPANs),
802.15.3c_2009
[1.2] http://www.wirelesshd.org/
[1.3] http://grouper.ieee.org/groups/802/11/Reports/tgac_update.htm
[1.4] http://www.whdi.org/
[2.1] http://en.wikipedia.org/wiki/U-NII
[2.2] IEEE P802.11n/D2.00 Draft STANDARD for Wireless LAN Medium Access
Control(MAC) and Physical Layer(PHY) Specifications : Enhancements for High Throughput.
[2.3] D. Wang, G. Zhu, Z. Hu, “Optimal Pilots in Frequency Domain for Channel
Estimation in MIMO-OFDM Systems in Mobile Wireless Channels,” IEEE VTC 2004-Spring, pp. 608 – 612.
[3.1] IEEE 802.11 TGn channel model special committee, “TGn Channel Models for IEEE
802.11 WLANs”, IEEE doc.: IEEE 802.11-03/940r4, May 2004.
[3.2] A.A.M Saleh and R.A. Valenzuela, “A statistical model for indoor multipath
propagation,” JSAC, vol. 5, 1987, pp.128-137.
[3.3] Q.H. Spencer, et al., “Modeling the statistical time and angle of arrival characteristics
of an indoor environment,” IEEE J. Select. Areas Commun., vol. 18, no. 3, March
2000, pp. 347-360.
[3.4] R.J-M. Cramer, R.A. Scholtz, and M.Z. Win, “Evaluation of an ultra-wide-band
propagation channel,” IEEE Trans. Antennas Propagat., vol. 50, no.5 May 2002, pp. 561-570
[4.1] C. C. Chang, C. H. Su, J. M. Wu, “A low power baseband OFDM receiver IC for fixed
WiMAX communication,” IEEE A-SSCC, 2007, pp. 292-29.
[4.2] C. Hsiao, C. Y. Chen, T. D. Chiueh, “Design of a dual-mode baseband receiver for
802.11n and 802.16e MIMO OFDM/OFDMA,” VLSI-DAT 2009, pp. 331-33.
[4.3] T. H. Kim and I. C. Park, “Low-power and high-accurate synchronization for IEEE
802.16d Systems,” IEEE Trans. on VLSI Systems, vol. 16, pp. 1620-1630, Dec. 2008.
[4.4] Ting-Jung Liang; Xin Li; Irmer, R.; Fettweis, G.; “Synchronization in OFDM-based
WLAN with transmit and receive diversities, “IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, 2005. Volume 2, 11-14 Sept.2005 Page(s):740-744
[4.5] A. Burg, and et al., “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE JSSCC. Vol. 40, pp. 1566-1577, Jul. 2005.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2010-8-24 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare