博碩士論文 975202087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.143.235.104
姓名 羅尉賢(Wei-Hsien Lo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以視訊為基礎之手寫簽名認證
(Video-based Handwritten Signature Verification)
相關論文
★ 影片指定對象臉部置換系統★ 以單一攝影機實現單指虛擬鍵盤之功能
★ 基於視覺的手寫軌跡注音符號組合辨識系統★ 利用動態貝氏網路在空照影像中進行車輛偵測
★ 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測★ 影像中賦予信任等級的群眾切割
★ 航空監控影像之區域切割與分類★ 在群體人數估計應用中使用不同特徵與回歸方法之分析比較
★ 以視覺為基礎之強韌多指尖偵測與人機介面應用★ 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計
★ 影像特徵點匹配應用於景點影像檢索★ 自動感興趣區域切割及遠距交通影像中的軌跡分析
★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測★ Analysis of the Performance of Different Classifiers for Cloud Detection Application
★ 全天空影像之雲追蹤與太陽遮蔽預測★ 在全天空影像中使用紋理特徵之雲分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文提出以視訊為基礎進行手寫簽名認證,取代傳統使用的數位手寫板。原因為網路攝影機此項硬體設備比數位手寫板來得普及,較易取得也較便宜,可以降低成本的需求,並且在特徵資訊擷取上,能獲得的資訊也比數位手寫板來的多。傳統使用數位手寫板能擷取的特徵資訊主要集中在文字本身,但若使用網路攝影機,能擷取的資訊除了文字,還包含簽名者握筆姿勢的影像資訊。因此本篇論文提出兩種特徵資訊來進行簽名認證,一是以簽名文字為特徵的靜態資訊,使用曲波變換(curvelet transform)製作成特徵向量,另一是以簽名者握筆姿勢為特徵的動態資訊,使用motion energy image (MEI)製作成特徵向量,將使用上述兩種特徵資訊之認證流程串聯來進行手寫簽名認證,可得良好的結果錯誤接受率0%和錯誤拒絕率0.5%,在模仿簽名的部份錯誤接受率0.05%亦是如此。
摘要(英) This paper proposes a video-based handwritten signature verification framework. When acquiring signature information, we use a webcam in substitution for a digitizing tablet. Because webcams are more prevalent and cheaper than digitizing tablets, using webcams as sensors can reduce the cost. In addition, the features extracted using a webcam also contain more information. In tradition handwritten signature verification, features extracted using a digitizing tablet are mainly trajectories. But for the features extracted using a webcam, we can acquire pen grasping posture information of the subscriber in addition to the trajectories of the signature. Therefore, in the proposed framework, we perform video-based handwritten signature verification using two different types of feature information. For the first type of feature, we perform curvelet transform on the subscriber’s writing trajectory to obtain static information. The second type of feature is dynamic information which is the pen grasping posture of the subscriber. The dynamic feature is represented by motion energy image (MEI). We cascade the classifiers using static information and dynamic information to perform handwritten signature verification. The proposed video-based handwritten signature verification framework achieves a low false acceptance rate of 0% and false rejection rate 0.5% for our handwritten signature database without imitation signatures. For the database with imitation signatures, the proposed framework can also achieve a low false acceptance rate of 0.05%.
關鍵字(中) ★ 簽名認證
★ 曲波變換
★ 移動能量圖
關鍵字(英) ★ curvelet transform
★ motion energy image
★ signature verification
論文目次 摘要..............................................i
Abstract.........................................ii
目錄............................................iii
附圖目錄..........................................v
附表目錄.........................................vi
第一章 緒論.......................................1
1-1研究目的..............................1
1-2文獻探討..............................1
1-3系統架構..............................4
第二章 相關技術...................................6
2-1 k-means..............................6
2-2粒子濾波器(particle filter).........7
2-3曲波變換(curvelet transform)........8
2-4 Motion Energy Image(MEI)..........11
2-5 Principal Component Analysis(PCA).12
2-6 Linear Discriminant Analysis(LDA).13
第三章 系統架構..................................16
3-1筆尖偵測與追蹤.......................16
3-2靜態資訊.............................20
3-3動態資訊.............................21
3-4訓練以及認證方法.....................24
第四章 實驗結果與討論............................26
4-1環境設定.............................27
4-2資料庫介紹...........................27
4-3特徵資訊的擷取.......................29
4-3.1 靜態資訊..........................29
4-3.2 動態資訊..........................29
4-4實驗結果.............................31
4-4.1 閥值的選擇........................31
4-4.2 真實簽名資料庫實驗結果............34
4-4.3 模仿簽名資料庫實驗結果............34
4-4.4 各種特徵資訊比較..................34
4-4.5 是否使用zero mean之比較...........37
第五章 結論與未來工作............................38
第六章 參考文獻..................................42
參考文獻 [1]J. Fierrez, J. Ortega-Garcia, D. Ramos, J. Gonzalez-Rodriguez , ”HMM-based on-line signature verification: Feature extraction and signature modeling,” Pattern Recognition Letters, vol. 28, pp.2325–2334, 2007.
[2]L. Yang, B. K. Widjaja and R. Prasad, ”Application of Hidden Markov Models for signature verification,” Pattern Recognition, vol. 28, no. 2, pp.161-170, 1995.
[3]F. Aguilar, J. Krawczyk, S. O. Garcia, A. K. Jain, “Fusion of local and regional approaches for on-line signature verification,” Internat. Workshop on Biometric Recognition Systems, vol. 3781, pp.188–196, 2005.
[4]A. P. Shanker, A.N. Rajagopalan, ”Off-line signature verification using DTW, ” Pattern Recognition Letters, vol. 28, pp.1407–1414, 2007.
[5]L. L. Lee, T. Berger, and E. Aviczer, “Reliable on-line human signature verification systems,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 6, pp. 643-647, 1996.
[6]L. Bovino, S. Impedovo, G. Pirlo, and L. Sarcinella, “Multi-expert verification of hand-written signatures,” Proceedings of the Seventh Internat. Conference on Document Analysis and Recognition (ICDAR), 2003.
[7]A. K. Jain, F. D. Griess, and S. D. Connell, “On-line signature verification,” Pattern Recognition, vol. 35, pp. 2963-2972, 2002.
[8]T. Qu, A. E. Saddik, and A. Adler, “A stroke based algorithm for dynamic signature verification,” Electrical and Computer Engineering, 2004.
[9]G. Dimauro, S. Impedovo, R. Modugno, G.Pirlo, and L. Sarcinella, “Analysis of stability in hand-written dynamic signatures,” Proceedings of the Eighth Internat. Workshop on Frontiers in Handwriting Recognition (IWFHR), 2002.
[10]S. H. Kim, M. S. Park, and J. Kim, “Applying personalized weights to a feature set for on-line signature verification,” Third Internat. Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 882, 1995.
[11]J. Lee, H. S. Yoon, J. Soh, B. T. Chun, and Y. K. Chung, “Using geometric extrema for segment-to-segment characteristics comparison in online signature verification,” Pattern Recognition, vol. 37, pp. 93-103, 2004.
[12]S. K. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and recognition using appearance-adaptive models in particle filters, ” IEEE Trans. on Image Processing, vol. 13, no. 11, pp.1491-1506, Nov. 2004.
[13]K. Nummiaro, E. Koller-Meier, and L. V. Gool, ” An adaptive color-based particle filter, ” Image and Vision Computing, vol. 21, pp.99–110, 2003.
[14]M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, ” A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, ” IEEE Trans. on Signal Processing, vol. 50, no. 2, pp.174-188, Feb. 2002.
[15]D. L. Donoho, and M. R. Duncan, ” Digital curvelet transform: strategy, implementation and experiments,” Department of Statistics Stanford University, Nov. 1999.
[16]I. J. Sumana, Md. M. Islam, D. Zhang, and G. Lu, “Content based image retrieval using curvelet transform,” Gippsland School of Information Technology.
[17]E. Candes, L. Demanet, D. Donoho, and L. Ying, ” Fast Discrete Curvelet Transforms, ” Mar. 2006.
[18]J. Han, and B. Bhanu, ”Individual recognition using gait energy image,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp.316-322, Feb. 2006.
[19]A. F. Bobic, and J. W. Davis, ”The recognition of human movement using temporal templates, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp.257-267, Mar. 2001.
[20]J. M. Cormick, and M. Isard, ” Partitioned sampling, articulated objects, and interface-quality hand tracking, ” Compaq Systems Research Center.
[21]H. Wang, D. Suter, K. Schindler, and C. Shen, “Adaptive object tracking based on an effective appearance filter, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp.1661-1667, Sep. 2007.
[22]Q. Sumin, and H. Xianwu, “Hand tracking and gesture recognition by anisotropic kernel mean shift, ” IEEE Int. Conference Neural Networks & Signal Processing, pp.581-585, Jun. 2008.
[23]P. Tissainayagam, and D. Suter, “Assessing the performance of corner detectors for point feature tracking applications, ” Image and Vision Computing, vol. 22, pp.663–679, 2004
[24]C. Garcia, and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 1, no. 3, pp.264-277, Sep. 1999.
[25]R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving shadow suppression in moving object detection with HSV color information, ” IEEE Intelligent Transportation Systems Conference Proceedings, pp. 334-339, Aug. 2001.
[26]R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp.1337-1342, Oct. 2003.
[27]N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection, ” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1063-6919, 2005.
[28]L. R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp.257–286, 1989.
[29]M. Bressan, and J. Vitria, ”Nonparametric discriminant analysis and nearest neighbor classification,” Pattern Recognition Letters, vol. 24, pp.2743–2749, 2003.
[30]H. Hikawa, and S. Matsubara, “Pseudo RBF network for position independent hand posture recognition system, ” Proceedings of International Joint Conference on Neural Networks, Aug. 2007.
指導教授 鄭旭詠(Hsu-Yung Cheng) 審核日期 2010-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明