參考文獻 |
[1]J. Fierrez, J. Ortega-Garcia, D. Ramos, J. Gonzalez-Rodriguez , ”HMM-based on-line signature verification: Feature extraction and signature modeling,” Pattern Recognition Letters, vol. 28, pp.2325–2334, 2007.
[2]L. Yang, B. K. Widjaja and R. Prasad, ”Application of Hidden Markov Models for signature verification,” Pattern Recognition, vol. 28, no. 2, pp.161-170, 1995.
[3]F. Aguilar, J. Krawczyk, S. O. Garcia, A. K. Jain, “Fusion of local and regional approaches for on-line signature verification,” Internat. Workshop on Biometric Recognition Systems, vol. 3781, pp.188–196, 2005.
[4]A. P. Shanker, A.N. Rajagopalan, ”Off-line signature verification using DTW, ” Pattern Recognition Letters, vol. 28, pp.1407–1414, 2007.
[5]L. L. Lee, T. Berger, and E. Aviczer, “Reliable on-line human signature verification systems,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 6, pp. 643-647, 1996.
[6]L. Bovino, S. Impedovo, G. Pirlo, and L. Sarcinella, “Multi-expert verification of hand-written signatures,” Proceedings of the Seventh Internat. Conference on Document Analysis and Recognition (ICDAR), 2003.
[7]A. K. Jain, F. D. Griess, and S. D. Connell, “On-line signature verification,” Pattern Recognition, vol. 35, pp. 2963-2972, 2002.
[8]T. Qu, A. E. Saddik, and A. Adler, “A stroke based algorithm for dynamic signature verification,” Electrical and Computer Engineering, 2004.
[9]G. Dimauro, S. Impedovo, R. Modugno, G.Pirlo, and L. Sarcinella, “Analysis of stability in hand-written dynamic signatures,” Proceedings of the Eighth Internat. Workshop on Frontiers in Handwriting Recognition (IWFHR), 2002.
[10]S. H. Kim, M. S. Park, and J. Kim, “Applying personalized weights to a feature set for on-line signature verification,” Third Internat. Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 882, 1995.
[11]J. Lee, H. S. Yoon, J. Soh, B. T. Chun, and Y. K. Chung, “Using geometric extrema for segment-to-segment characteristics comparison in online signature verification,” Pattern Recognition, vol. 37, pp. 93-103, 2004.
[12]S. K. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and recognition using appearance-adaptive models in particle filters, ” IEEE Trans. on Image Processing, vol. 13, no. 11, pp.1491-1506, Nov. 2004.
[13]K. Nummiaro, E. Koller-Meier, and L. V. Gool, ” An adaptive color-based particle filter, ” Image and Vision Computing, vol. 21, pp.99–110, 2003.
[14]M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, ” A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, ” IEEE Trans. on Signal Processing, vol. 50, no. 2, pp.174-188, Feb. 2002.
[15]D. L. Donoho, and M. R. Duncan, ” Digital curvelet transform: strategy, implementation and experiments,” Department of Statistics Stanford University, Nov. 1999.
[16]I. J. Sumana, Md. M. Islam, D. Zhang, and G. Lu, “Content based image retrieval using curvelet transform,” Gippsland School of Information Technology.
[17]E. Candes, L. Demanet, D. Donoho, and L. Ying, ” Fast Discrete Curvelet Transforms, ” Mar. 2006.
[18]J. Han, and B. Bhanu, ”Individual recognition using gait energy image,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp.316-322, Feb. 2006.
[19]A. F. Bobic, and J. W. Davis, ”The recognition of human movement using temporal templates, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp.257-267, Mar. 2001.
[20]J. M. Cormick, and M. Isard, ” Partitioned sampling, articulated objects, and interface-quality hand tracking, ” Compaq Systems Research Center.
[21]H. Wang, D. Suter, K. Schindler, and C. Shen, “Adaptive object tracking based on an effective appearance filter, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp.1661-1667, Sep. 2007.
[22]Q. Sumin, and H. Xianwu, “Hand tracking and gesture recognition by anisotropic kernel mean shift, ” IEEE Int. Conference Neural Networks & Signal Processing, pp.581-585, Jun. 2008.
[23]P. Tissainayagam, and D. Suter, “Assessing the performance of corner detectors for point feature tracking applications, ” Image and Vision Computing, vol. 22, pp.663–679, 2004
[24]C. Garcia, and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 1, no. 3, pp.264-277, Sep. 1999.
[25]R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving shadow suppression in moving object detection with HSV color information, ” IEEE Intelligent Transportation Systems Conference Proceedings, pp. 334-339, Aug. 2001.
[26]R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp.1337-1342, Oct. 2003.
[27]N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection, ” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1063-6919, 2005.
[28]L. R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp.257–286, 1989.
[29]M. Bressan, and J. Vitria, ”Nonparametric discriminant analysis and nearest neighbor classification,” Pattern Recognition Letters, vol. 24, pp.2743–2749, 2003.
[30]H. Hikawa, and S. Matsubara, “Pseudo RBF network for position independent hand posture recognition system, ” Proceedings of International Joint Conference on Neural Networks, Aug. 2007.
|