博碩士論文 975202046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.138.37.43
姓名 孫煜勝(Yu-Sheng Sun)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 改進Adaboost分類器做快速的物件偵測應用於人臉偵測
(Improved Adaboost Classifier for Fast Object Detection with Application to Face Detection)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Adaboost最廣泛是用於人臉偵測系統。長久以來的研究,是以人臉影像特徵的固定整數權重為特徵訓練人臉來進行偵測,而Adaboost挑選出來的人臉影像特徵是否能保證為最佳的特徵,可否能再提高偵測的準確率,而false positive rate是否能再快速的下降,因此需要開始思考,當人臉影像偵測已經發展到一個階段時,如何突破現有的瓶頸,朝向更好的方法邁進。
  本篇論文提出一種利用新的訓練方法來改進Adaboost分類器的偵測效果。目的是希望降低原始的Adaboost偵測所產生的false alarm,由於Adaboost的特徵權重為固定的整數權重,但實驗結果顯示固定的權重並非是最佳挑選出欲偵測的特徵,因此我們推翻以往的訓練方法,利用LDA的方式和PCA來調整訓練每一種特徵最佳的權重。除了利用LDA和PCA特徵之外,並加入整合NDA,來達到降低更多false alarm偵測效果,並且在訓練階段可以快速的下降false positive rate,以達到我們論文的偵測目的。
在速度方面我們也把原始浮點數的系統訓練架構[9]做一個更快速的改進,也就是由原始Adaboost訓練好的特徵來進行這些演算法的訓練調整權重組合,透過平行的處理每一個挑選出來的特徵,並利用投票法來挑選最後的特徵,來達到更好的人臉偵測率。
關鍵字: Face detection, AdaBoost, FLDA, PCA, NDA.
摘要(英) Adaboost is the most widely used in face detection system. As reported in several literatures, face detection is usually carried out based on face image feature with a fixed integer weight through training. Whether the selected features from human face samples guarantee to be the best features or they can improve the potential correct rate while decreasing the false positive rate quickly is a topic worth investigating. Moreover, once the face detection techniques have been developed to a certain degree, the breaking of current bottlenecks toward a profound standard is still a long way to go.
In this thesis, we present a novel training method to improve Adaboost classifier for enhancing the detection performance. In our proposed method, it will reduce more false alarm than traditional Adaboost because the original features in Viola’s Adaboost used fixed integer weight features. The results show that the using of floating point weight will indeed select better features for detection. We abandon traditional training methods by using LDA and PCA to adjust each weight for obtaining the best feature. In addition to using LDA and PCA features, NDA feature is also integrated to decrease false alarm. In the training stage, we can also quickly decrease the false positive rate while achieving better detection results.
We then train the system architecture to make profound improvement for original floating point feature weight [9] in respect to speed. That is features are trained from the original Adaboost, then be fed to the second training process using LDA,PCA and NDA algorithms to adjust the feature weight combination as parallel processing for each selected feature. Finally, voting mechanism is adopted to select the last feature to achieve the best face detection rate.
Keyword : Face detection, AdaBoost, FLDA, PCA, NDA.
關鍵字(中) ★ Face detection
★ AdaBoost
★ FLDA
★ PCA
★ NDA.
關鍵字(英) ★ PCA
★ NDA.
★ AdaBoost
★ FLDA
★ Face detection
論文目次 摘要 v
Abstract vi
Acknowledgements vii
Contents viii
List of Figures x
List of Tables xii
Chapter1 - 1 -
Introduction - 1 -
1.1 Research Motivation - 1 -
1.2 Related Works - 2 -
1.3 System Overview - 4 -
1.4 Thesis Organization - 6 -
Chapter2 - 7 -
Integral Image and Feature - 7 -
2.1 Integral Image - 8 -
2.2 Feature - 10 -
2.3 Image Processing - 11 -
Chapter3 - 12 -
Strengthen Weak Classifier method - 12 -
3.1 Use BFS(Brute Force Search) Algorithm - 14 -
3.2 Use LDA(Linear Discriminant Analysis) Algorithm - 16 -
3.3 Use PCA (Principal Component Analysis) Algorithm - 21 -
3.4 Use NDA (Nonparametric Discriminant Analysis) Algorithm - 31 -
3.5 Select better weak classifier - 34 -
Chapter4 - 37 -
Cascaded-based Classifier Learning - 37 -
4.1 Week Classifiers - 38 -
4.2 Week Classifier Selection and Strong Classifier Construction - 40 -
4.3 Cascaded Structure of a Strong Classifier - 43 -
Chapter5 - 45 -
Experimental Result - 45 -
5.1 Face Image Database - 46 -
5.1.1 MIT+CMU Rowley Face Image Database - 47 -
5.1.2 Cinema Face Image Database - 48 -
5.1.3 Web Face Image Database - 49 -
5.2 Experimental Results - 50 -
5.2.1 Experimental 1 - MIT+CMU Rowley Face Image Database - 53 -
5.2.2 Experimental 2 - Cinema Face Image Database - 57 -
5.2.3 Experimental 3 - Web Face Image Database - 59 -
Chapter 6 - 61 -
Conclusion and Future Works - 61 -
Reference - 62 -
參考文獻 [1] P. Viola and M. Jones, “ Rapid object detection using a boosted cascade of simple feature”, Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, Dec 2001.
[2] Henry Schneiderman, Takeo Kanade, “A statistical method for 3d object detection applied to faces and cars”, Proc of Computer Vision and Pattern Recognition (1):746–751, 2000.
[3] Edgar Osuna, Robert Freund, Federico Girosi, “Training support vector machines: an application to face detection”, In Computer Vision and Pattern Recognition 130–136, 2000.
[4] Christophe Garcia, Manolis Delakis, Convolutional face finder: “A neural architecture for fast and robust face detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11):1408–1423, 2004.
[5] Yongmin Li, Shaogang Gong, H. Liddell, “Support vector regression and classification based multi-view face detection and recognition”, IEEE International Conference on Automatic Face and Gesture Recognition, pp. 300–305, 2000.
[6] Lindsay I Smith, “A Tutorial on Principal Components Analysis”, 2002.
[7] Yusuke Nara, Jianming Yang, Yoshikazu Suematsu, “Face Recognition Using Improved Principal Component Analysis”, Proc. International Symposium on Micromechatronics and Human Science, pp.77–82, 2003.
[8] Hua Yu, Jie Yang “A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition”, Pattern Recognition, vol. 34, no. 10, pp.2067–2070, 2001.
[9] Hakan Cevikalp, Marian Neamtu, Mitch Wilkes , Atalay Barkana, “Discriminative Common Vectors for Face Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 1, January 2005.
[10] Paul Viola, Michael Jones, “Robust Real Time Object Detection,” IEEE ICCV Workshop Statistical and Computational Theories of Vision, July 2001.
[11] Liansheng ZHUANG, Ketan, TANG, Nenghai YU, “Fast Salient Object Detection Based on Segments,” International Conference on Measuring Technology and Mechatronics Automation, January 2009.
[12] Takeshi Mita, Toshimitsu Kaneko, Bjorn Stenger, Osamu Hori, “Discriminative Feature Co-Occurrence Selection for Object Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, No. 7, JULY 2008.
[13] Sri-Kaushik Pavani, David Delgado, Alejandro F. Frangi, “Haar-like features with optimally weighted rectangles for rapid object dectection”, Pattern Recognition, May, 2009.
[14]http://debut.cis.nctu.edu.tw/~ching/Face/TheFaceProject%20on%20Boosting%20algorithm/Rapid%20Object%20Detection%20using%20a%20Boosted%20Cascade%20of.ppt
[15] http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/LDA.pdf
[16] http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/PCAMissingData.pdf
[17] K.Fukunaga, J.M.ManTock, “Nonparametric Discriminant Analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No.6, Novenber 1983.
[18] Peng Wang, Qiang Ji, “Multi-view face and eye detection using discriminant features”, Computer Vision and Image Understanding 105 (99-111), 2007.
[19] Yoav Freund, Robert E. Schapire, “A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting,” Journal of Computer and System Sciences, 55(l): 119-139, 1997.
[20] H.A. Rowley, S. Baluja, T. Kanade, “Neural network-based face detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (1) (1998) 23–38.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明