參考文獻 |
[1.1] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, ” Large on-off ratios and negative differential resistance in a molecular electronic device” ,Science 286, 1550 (1999).
[1.2] J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. V. Löhneysen,“ Driving current through single organic molecules”, Loheysen, Phys. Rev. Lett. 88, 176804 (2002).
[1.3] S.Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm “Single-electron transistor of a single organic molecule with access to several redox states”,Nature 425, 68 (2003).
[1.4] A. Mitra, I. Aleiner, and A. J. Millis,“Phonon effects in molecular transistors: Quantal and classical treatment”, Phys. Rev. B 69, 245302 (2004).
[1.5] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisators and P. L. McEuen , “Nanomechanical oscillations in a single- transistor”, Nature. 407, 57 (2000).
[1.6] N. B. Zhitenev, H. Meng, and Z. Bao, “ Conductance of small molecular junctions” Phys. Rev. Lett. 88, 226801 (2002).
[1.7] A. J. Minnich M. S. Dresselhaus, Z. F. Ren and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”,Energy Environ. Sci. 2 , 466 (2009).
[1.8] A. Majumdar ,“Thermoelectricity in semiconductor nanostructures”, Science 303, 777 (2004).
[1.9] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, “Recent developments in thermoelectric materials”, International Materials Reviews, 48, 45 (2003).
[1.10] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597 (2001).
[1. 11] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Health,“Silicon nanowires as efficient thermoelectric materials”, Nature, 451, 168 (2008).
[1.12] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge ,“Quantum dot superlattice thermoelectric materials and devices ”, Science 297, 2229 (2002).
[1.13] Y. M. Lin and M. S. Dresselhaus ,“Thermoelectric properties of superlattice nanowires ”, Phys. Rev. B, 68, 075304 (2003).
[1.14] P. Murphy, S. Mukerjee, and J. Moore,“Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B 78, 161406 (2008).
[1.15] S. Sapmaz, P. Jarillo-Herrero, ya. M. Blanter, C. Dekker, H. S. J. van der Zant ,“Tunneling in suspended carbon nanotubes assisted by longitudinal phonons ”,Phys. Rev. Lett. 96, 026801 (2006).
[1.16] A. P. Jauho, N. S. Wingreen and Y. Meir ,“ Time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator”, Phys. Rev. B, 50, 5528 (1994).
[1.17] D. M. T. Kuo and Y. C. Chang,“ Tunneling current through a quantum dot with strong electron-phonon interaction ”, Phys. Rev. B, 66, 085311 (2002).
[1.18] M. Galperin, A. Nitzan and M. A. Ratner,“ Heat conduction in molecular transport junctions ”,Phys. Rev. B, 75, 155312 (2007).
[1.19] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang,J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song,M. S. Dresselhaus, G. Chen and Z. Ren “ Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy”, Appl. Phys. Lett. 93, 193121 (2008).
[1.20] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould,D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren“ Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys ”, Nano Lett. 8, 4670 (2008).
[1.21] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, “ High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys ”, Science, 320, 634 (2008).
[2.1] D. M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
[2.2] N. B. Zhitenev, H. Meng, and Z. Bao, ” Conductance of Small Molecular Junctions” Phys. Rev. Lett. 88, 226801 (2002).
[2.3] D. M. T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007).
[2.4] D. M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000).
[2.5] D. M. T. Kuo and Y. C. Chang, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B, 77, 245412 (2000).
[2.6] G. D. Mahan, Many Particle Physics, 3rd ed. (Plenum, New York, 2000 ).
[2.7] D. M. T. Kuo and Y. C. Chang , “Tunneling current through a quantum dot with strong electron-phonon interaction”, Phys. Rev. B,66,085311 (2002).
[2.8] J.Liu, J.Song, Q. F. Song, and X. C. Xie, “Electric-current-induced heat generation in a strongly interacting quantum dot in the Coulomb blockade regime”, Phys. Rev. B, 79, 161309 (2009).
[2.9] K. Flensberg, “Tunneling broadening of vibrational sidebands in molecular transistors”, Phys. Rev. B , 68, 205323 (2003).
[2.10] B. Dong and X. L. lei, “Effect of the Kondo correlation on the thermopower in a quantum dot ”, J. Phys. Cindens. Matters 14, 11747 (2002).
[2.11] D. Segal, “Single Mode Heat Rectifier: Controlling Energy Flow Between Electronic Conductors”, Phys. Rev. Lett. 100, 105901, (2009).
[3.1] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisators and P. L. McEuen , “Nanomechanical oscillations in a single- transistor”, Nature. 407, 57 (2000).
[4.1] D. M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling
current through a single quantum dot”, Physica E 27, 355 (2005).
[4.2] D. M. T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[4.3] G. Mahan, B. Sales and J. Sharp, “Thermoelectric materials: New approaches to an old problem”, Physics Today 50, 42 (1997).
[4.4] D. M. T. Kuo ,“Thermoelectric properties of multiple quantum dots junction system”, Jap. J. Appl. Phys. 48, 125005 (2009).
[4.5] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B. 78, 161406 (2008).
|