博碩士論文 90542002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.217.52.224
姓名 周念湘(Nien-Shiang Chou)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 空間混沌模型於合成孔徑雷達影像變遷偵測之研究
(A Study on Change Detection in SAR Images using Spatial Chaotic Model)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於本篇論文中,我們利用空間混沌模型(Spatial chaotic model)設計了一個新的變遷偵測演算法,用以辨認兩張同地點不同時間取得之合成孔徑雷達(SAR)影像的變異,以下簡稱SCM。此方法植基於具同調性的合成孔徑雷達影像可被塑模成空間混沌系統。在此研究中,偵測效能指標分成三類:辨識率(Detection rate)、誤判率(False detection rate)以及漏判率(Loss detection rate);我們的方法都優於簡易影像相異法(Simple image difference)以及主成分分析法(Principle component analysis)。尤其在兩張前後期影像未完美疊合(mis-registration),或者是變化細微的情況下,SCM的優勢更加明顯。在通常的SAR影像變遷偵測的方法中,去斑駁雜訊的前置程序是必要的,但也同時降低了影像的幾何特徵或者是空間解析度,進而降低辨識率;SCM不需要進行去斑駁的前置程序,其偵測率因而相對提高。
摘要(英) In this thesis, we propose a new change detection algorithm for SAR images using the concept of spatial chaotic model. The new method was built on the fact that the coherent SAR images can be modeled by a spatial chaotic system. The proposed method was applied to multi-temporal polarimetric SAR images for change detections. As a reference, the simple image difference (DI) technique and the principal component analysis (PCA) were compared. Also, images mis-registration effects were also tested. The proposed method (hereafter called SCM) is capable of tolerating mis-registration effect even when the signal-to-noise ratio is relatively low, as compared to both DI and PCA methods. Comparison was made on the case when the radiometric changes are subtle. It is shown that the proposed method performs very well to detect such diminutive changes without being deteriorated by the presence of speckle for which both DI and PCA fail to carry out the detection.
關鍵字(中) ★ 碎型
★ 空間混沌模型
★ 合成孔徑雷達
關鍵字(英) ★ wavelet
★ fractal
★ change detection
★ fractional Brownian motion
★ SCM
★ SAR
論文目次 Abstract vi
Table of contents ix
1. Introduction 1
1.1. Research motivation 2
1.2. Main results 3
1.3. Outline of this thesis 4
2. Review of SAR signal model 7
2.1. SAR image formation 7
2.2. SAR speckle 11
2.2.1. Stochastically properties of SAR images 12
2.2.2. Chaotic phenomenon of SAR signals 14
3. Change detection approaches in SAR images 15
3.1. Image preprocessing 15
3.1.1. Radiometric correction 15
3.1.2. Image co-registration 16
3.1.3. Image de-speckling 16
3.2. Detection strategies 17
3.2.1. Supervised/Unsupervised approaches 17
3.2.2. Pixel-based/Feature-based approaches 18
3.2.3. Object-level/hybrid approaches 19
3.3. Thresholding methods 20
4. Review of statistics 23
4.1. Statistical Inference 23
4.1.1. Maximum-Likelihood (ML) Estimation 25
4.1.2. Maximum-a-Posteriori (MAP) Estimation 26
4.1.3. Neyman–Pearson decision rule (CFAR) 26
4.2. Parzen window Density Estimation 28
4.2.1.1. Choice of bandwidth 33
4.2.1.2. Choice of kernel 34
4.2.1.3. Parzen-Window Convergence 35
5. A study of fractals and fractional Brownian motion 37
5.1. Fractals 37
5.1.1. Deterministic fractals 37
5.1.2. Random fractals 39
5.1.3. Linear iterated function systems (IFS) 39
5.1.3.1. Example 1: leaf 40
5.1.3.2. Example 2: mountain 41
5.2. Regular Brownian motion 42
5.3. Fractional Brownian motion 43
5.3.1. Time-domain properties of fBm 46
5.3.2. Spectral-domain properties of fBm 48
5.4. Characterizing chaos 51
5.4.1. Dimension estimation 52
5.4.1.1. Box counting dimension 52
5.4.1.2. Correlation dimension 52
5.4.2. Attractor reconstruction methods 54
5.4.2.1. Example: Lorenz system 55
5.4.2.2. Choice of time delay 57
5.4.2.3. Choice of embedding dimension 59
5.5. Simulation of fractional Brownian motion 60
5.5.1. Simulation by time domain formula 60
5.5.2. Simulation by spectral domain properties 61
6. The proposed method 69
6.1. Chaos and nonlinear dynamics 69
6.2. Local fractal dimension of an image 73
6.2.1. The power spectral density of the fBm 73
6.2.2. The variance of the wavelet coefficients 75
6.3. Spatial chaotic model 75
6.4. Fractal image derived from a SAR image 77
6.5. Change detection by constant false alarm rate (CFAR) value 78
7. Performance evaluation 81
7.1. Methods compared 81
7.2. Performance index 81
7.3. SCM validation with simulated data 81
7.3.1. Case-A1 85
7.3.2. Case-A2 87
7.3.3. Case-B1 89
7.3.4. Case-B2 91
7.3.5. Discussion of case-A1, A2, B1, and B2 92
7.3.6. Case-C1 94
7.3.7. Case-C2 96
7.3.8. Discussion of case-C1, and C2 97
7.4. Study area and data sets 98
7.5. Ground truth 103
7.6. Results and Discussion 103
8. Conclusions 108
9. Future works 109
10. References 111
參考文獻 [1] F. Bovolo and L. Bruzzone, "A detail-preserving scale-driven approach to change detection in multitemporal SAR images," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 2963-2972, 2005.
[2] R. G. White, "Change Detection in Sar Imagery," International Journal of Remote Sensing, vol. 12, pp. 339-360, Feb 1991.
[3] J. Cihlar, et al., "Change Detection with Synthetic Aperture Radar," International Journal of Remote Sensing, vol. 13, pp. 401-414, Feb 1992.
[4] P. S. Chavez and D. J. Mackinnon, "Automatic Detection of Vegetation Changes in the Southwestern United-States Using Remotely-Sensed Images," Photogrammetric Engineering and Remote Sensing, vol. 60, pp. 571-583, May 1994.
[5] L. Bruzzone and S. B. Serpico, "An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images," IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 858-867, 1997.
[6] T. Le Toan, et al., "Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results," IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 41-56, 1997.
[7] T. Hame Istvan Heiler Jesus San Miguel, "An unsupervised change detection and recognition system for forestry," International Journal of Remote Sensing, vol. 19, pp. 1079-1099, 1998.
[8] M. Ridd, "A Comparison of Four Algorithms for Change Detection in an Urban Environment," Remote Sensing of Environment, vol. 63, pp. 95-100, 1998.
[9] L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Transactions on Geoscience and Remote Sensing, vol. 38, pp. 1171-1182, May 2000.
[10] S. Quegan, et al., "Multitemporal ERS SAR analysis applied to forest mapping," IEEE Transactions on Geoscience and Remote Sensing, vol. 38, pp. 741-753, 2000.
[11] D. Lu, et al., "Change detection techniques," International Journal of Remote Sensing, vol. 25, pp. 2365-2407, Jun 2004.
[12] V. S. Frost, et al., "A model for radar images and its application to digital filtering of multiplicative noise," IEEE Trans. Pattern Anal. Mach. Intell., vol. 4, pp. 157-165, 1982.
[13] J. S. Lee, "Digital image enhancement and noise filtering by use of local statistics," IEEE Trans. Pattern Anal. Mach. Intell., vol. 2, pp. 165-168, 1980.
[14] J. S. Lee, et al., "A new technique for noise filtering of SAR interferometric phase images," IEEE Transactions on Geoscience and Remote Sensing, vol. 36, pp. 1456-1465, Sep 1998.
[15] J. S. Lee, et al., "Polarimetric SAR speckle filtering and its implication for classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 37, pp. 2363-2373, Sep 1999.
[16] C. Lopez-Martinez and X. Fabregas, "Polarimetric SAR speckle noise model," IEEE Transactions on Geoscience and Remote Sensing, vol. 41, pp. 2232-2242, Oct 2003.
[17] A. Lopes, et al., "Structure detection and statistical adaptive speckle filtering in SAR images," International Journal of Remote Sensing, vol. 14, pp. 1735-1758, 1993.
[18] S. Solbø and T. Eltoft, "Γ-WMAP: a statistical speckle filter operating in the wavelet domain," International Journal of Remote Sensing, vol. 25, pp. 1019-1036, 2004.
[19] M. R. Zaman and C. R. Moloney, "A Comparison of Adaptive Filters for Edge-preserving Smoothing of Speckle Noise," presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 1993), 1993.
[20] J. S. Lee, et al., "Improved Sigma Filter for Speckle Filtering of SAR Imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 202-213, Jan 2009.
[21] J. W. GOODMAN, "Some fundamental properties of speckle," Journa of Optical Society of America, vol. 66, pp. 1145-1150, 1976.
[22] J. R. G. Townshend, et al., "The impact of misregistration on change detection," IEEE Transactions on Geoscience and Remote Sensing, vol. 30, pp. 1054-1060, 1992.
[23] X. Dai and S. Khorram, "The effects of image misregistration on the accuracy of remotely sensed change detection," IEEE Transactions on Geoscience and Remote Sensing, vol. 36, pp. 1566-1577, 1998.
[24] H. Leung and T. Lo, "A Spatial-Temporal Dynamical Model for Multipath Scattering from the Sea," IEEE Transactions on Geoscience and Remote Sensing, vol. 33, pp. 441-448, Mar 1995.
[25] H. Leung, et al., "Detection of small objects in clutter using a GA-RBF neural network," IEEE Transactions on Aerospace and Electronic Systems, vol. 38, pp. 98-118, Jan 2002.
[26] H. H. Arsenault and G. April, "Properties of speckle integrated with a finite aperture and logarithmically transformed," Journal of the Optical Society of America, vol. 66, p. 1160, 1976.
[27] G. Manjunath, et al., "Denoising signals corrupted by chaotic noise," Communications in Nonlinear Science and Numerical Simulation, vol. 15, pp. 3988-3997, Dec 2010.
[28] J. Hu, et al., "Target detection within sea clutter: A comparative study by fractal scaling analyses," Fractals-Complex Geometry Patterns and Scaling in Nature and Society, vol. 14, pp. 187-204, Sep 2006.
[29] J. Hu, et al., "Detection of low observable targets within sea clutter by structure function based multifractal analysis," IEEE Transactions on Antennas and Propagation, vol. 54, pp. 136-143, Jan 2006.
[30] N. Xie and H. Leung, "Reconstruction of piecewise chaotic dynamic using a genetic algorithm multiple model approach," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 51, pp. 1210-1222, Jun 2004.
[31] M. McDonald and A. Damini, "Limitations of nonlinear chaotic dynamics in predicting sea clutter returns," IEEE Proceedings-Radar Sonar and Navigation, vol. 151, pp. 105-113, Apr 2004.
[32] N. Xie, et al., "A multiple-model prediction approach for sea clutter modeling," IEEE Transactions on Geoscience and Remote Sensing, vol. 41, pp. 1491-1502, Jun 2003.
[33] S. Haykin, et al., "Uncovering nonlinear dynamics - The case study of sea clutter," Proceedings of the IEEE, vol. 90, pp. 860-881, May 2002.
[34] S. Haykin, "Radar clutter attractor: implications for physics, signal processing and control," IEEE Proceedings-Radar Sonar and Navigation, vol. 146, pp. 177-188, Aug 1999.
[35] S. Haykin and S. Puthusserypady, "Chaotic dynamics of sea clutter," Chaos, vol. 7, pp. 777-802, Dec 1997.
[36] S. Haykin and X. B. Li, "Detection of Signals in Chaos," Proceedings of the IEEE, vol. 83, pp. 95-122, Jan 1995.
[37] D. Blacknell and C. J. Oliver, "Recognizing Chaos in Radar Images," Journal of Physics D-Applied Physics, vol. 27, pp. 1608-1618, Aug 14 1994.
[38] H. Leung and T. Lo, "Chaotic Radar Signal-Processing over the Sea," IEEE Journal of Oceanic Engineering, vol. 18, pp. 287-295, Jul 1993.
[39] L. Paolini, et al., "Radiometric correction effects in Landsat multi‐date/multi‐sensor change detection studies," International Journal of Remote Sensing, vol. 27, pp. 685-704, 2006.
[40] A. Nielsen, "Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies," Remote Sensing of Environment, vol. 64, pp. 1-19, 1998.
[41] A. A. Nielsen, "Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data," IEEE Transactions on Image Processing, vol. 11, pp. 293-305, 2002.
[42] G. G. Hazel, "Object-level change detection in spectral imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 39, pp. 553-561, Mar 2001.
[43] A. A. Nielsen, "The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data," IEEE Transactions on Image Processing, vol. 16, pp. 463-478, Feb 2007.
[44] Y. Bazi, et al., "An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 874-887, 2005.
[45] L. Bruzzone and D. F. Prieto, "An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images," IEEE Transactions on Image Processing, vol. 11, pp. 452-466, Apr 2002.
[46] T. Kasetkasem and P. K. Varshney, "An image change detection algorithm based on Markov random field models," IEEE Transactions on Geoscience and Remote Sensing, vol. 40, pp. 1815-1823, Aug 2002.
[47] P. C. Smits and W. L. Myers, "Echelon approach to characterize and understand spatial structures of change in multitemporal remote sensing imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 38, pp. 2299-2309, Sep 2000.
[48] H. Shimazaki and S. Shinomoto, "Kernel bandwidth optimization in spike rate estimation," Journal of Computational Neuroscience, 2009.
[49] D. J. Hand, Discrimination and Classification New York: Wiley, 1981.
[50] M. F. Barnsley and S. Demko, "Solution of an inverse problem for fractals and other sets," in The proceedings of Royal Society of Landon A399, 1985, pp. 243-275.
[51] N. Wadstromer, "An automatization of Barnsley's algorithm for the inverse problem of iterated function systems," IEEE Transactions on Image Processing, vol. 12, pp. 1388-1397, Nov 2003.
[52] B. Mandelbrolt and J. W. V. Ness, "Fractional Brownian motion, fractional noises and applications," IEEE Trans. Med. Imag., vol. 10, pp. 422-437, 1968.
[53] P. Flandrin, "On the spectrum of fractional Brownian motions " IEEE Transactions on Information Theory, vol. 35, pp. 197-199, 1989.
[54] W. Martin and P. Flandrin, "Wigner-Ville spectral analysis of nonstationary processes," presented at the IEEE Truns. Acousr., Speech. Sig. Proc, 1985.
[55] Kruger and A., "Implementation of a fast box-counting algorithm," Computer Physics Communications, vol. 98, pp. 224-234, 1996.
[56] T. Molteno, "Fast O(N) box-counting algorithm for estimating dimensions," Physical Review E, vol. 48, pp. R3263-R3266, 1993.
[57] P. Grassberger and I. Procaccia, "Measuring the strangeness of strange attractors," Physica D: Nonlinear Phenomena, vol. 9, pp. 189-208, 1983.
[58] P. Grassberger, "An optimized box-assisted algorithm for fractal dimensions," Physics Letters A, vol. 148, pp. 63-68, 1990.
[59] F. Takens, "Detecting strange attractors in turbulence," in Dynamical Systems and Turbulence. vol. 898, ed: Springer, Berlin, 1980.
[60] B. Mandelbrolt, The Fractal Geometry of Nature. New York: W. H. Freeman and Company, 1982.
[61] R. C. Hilborn, Chaos and Nonlinear Dynamics: Oxford University Press, New York, 1994.
[62] H. D. I. Abarbanal, Analysis of Observed Chaotic Data: Spring-Verlag, New York, 1996.
[63] C. V. Stewart, et al., "Fractional Brownian-Motion Models for Synthetic-Aperture Radar Imagery Scene Segmentation," Proceedings of the IEEE, vol. 81, pp. 1511-1522, Oct 1993.
[64] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674-693, 1989.
[65] G. W. Wornell, "Wavelet-Based Representations for the 1/F Family of Fractal Processes," Proceedings of the IEEE, vol. 81, pp. 1428-1450, Oct 1993.
[66] G. W. Wornell and A. V. Oppenheim, "Estimation of Fractal Signals from Noisy Measurements Using Wavelets," IEEE Transactions on Signal Processing, vol. 40, pp. 611-623, Mar 1992.
[67] M. P. Datcu, "Model for SAR images," 1992.
[68] Y. S. Xia and H. Leung, "Nonlinear spatial-temporal prediction based on optimal fusion," IEEE Transactions on Neural Networks, vol. 17, pp. 975-988, Jul 2006.
[69] G. Hennessey, et al., "Sea-clutter modeling using a radial-basis-function neural network," IEEE Journal of Oceanic Engineering, vol. 26, pp. 358-372, Jul 2001.
指導教授 陳錕山、范國清
(Kun-Shan Chen、Kuo-Chin Fan)
審核日期 2010-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明