博碩士論文 975202088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.219.253.199
姓名 周恩鋒(En-fong Chou)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 可適應天候變化的前車偵測技術
(Weather-adapted Preceding Vehicle Detection)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,車輛輔助安全駕駛系統的議題愈來愈受重視。在安全駕駛的研究上,我們架設一部相機於車前,用來偵測前車或障礙物,分析前車和已車的行車狀況,以確保駕駛人行車時的安全。
前車偵測中最常使用的方法就是利用車輛在地面上的陰影偵測前車,但是在雨天或天候不良的狀況下,無法有效的偵測到陰影。為了在不同的天氣下都能穩定的偵測前車,我們提出以水平邊及垂直邊的互動組合偵測前車。首先,我們動態的二值化水平邊及垂直邊;並且利用水平邊的真實寬度濾除過短的水平邊。接著,估算水平邊上方的垂直邊的顯著程度,如果水平邊上方的垂直邊夠顯著,我們判斷這條水平邊為車輛的最底部的水平邊,並在水平邊的左右兩側找到垂直的邊緣,產生候選車輛。如果水平邊上方的垂直邊不顯著,我們則是在水平邊的左右找一組對稱的垂直邊配對作為垂直邊緣。這時我們無法以水平邊找到車輛的底部,我們改以垂直邊配對的底部作為候選車輛的底部,產生候選車輛。最後,我們利用支持向量機對候選車輛做驗證判斷候選車輛是否為車輛或障礙物。
在實驗中,我們利用不同的天氣如晴天、陰天、雨天、向陽、與傍晚的影片測試演算法。我們在晴天、陰天、和向陽的天候狀況下,有超過 90% 的偵測率。此外,在雨天及傍晚的天候狀況下,也有超過 80% 的偵測率。
摘要(英) Recently, the issue on real-time driver assistance system becomes more and more popular. In this study, we propose a method to detect preceding vehicles with the road scene which is captured by a camera.
To detect preceding vehicle robustly under variant weather conditions, the proposed method utilizes the horizontal and vertical edges instead of underneath shadow which can’t be detected while the weather is bad such as rainy day or night. We check the vertical edge above horizontal edge to confirm the location of horizontal edge beside object and generate a candidate vehicle with vertical borders while horizontal edge is located at the bottom of object. If the bottom of object can’t be found by a horizontal edge, we provide a method to find the vertical borders and bottom of the vehicle by finding symmetric vertical edge pair. Then, we estimate the actual width of the vehicle to filter out objects which are too small or big. At last, we use SVM to verify the detected vehicle.
In the experiments, the proposed method was evaluated on images of different weather conditions such as sunny day, cloudy day and rainy day. The detection rate of preceding detection is over 90% in sunny day and cloudy day and is over 80% in rainy day.
關鍵字(中) ★ 前車偵測
★ 天候變化
★ 支持向量機
關鍵字(英) ★ weather-adapted
★ vehicle detection
★ support vector machine
論文目次 摘要 II
誌謝 IV
目錄 V
第一章 緒論 一
第二章 相關研究 二
第三章 車輛偵測 三
第四章 車輛驗證 四
第五章 實驗 五
第六章 結論及未來工作 六
附 錄 英文版論文 七
Abstract ……………………………………………………………………... ii
Contents ……………………………………………………………………. iii
List of Figures ................................................................................................. v
List of Tables ………………………………………………………………. vii
Chapter 1 Introduction ………………………………………………………. 1
1.1 Motivation …………………………………………………………. 1
1.2 System overview …………………………………………………... 2
1.3 Thesis organization ………………………………………………… 3
Chapter 2 Related Works ……………………………………………………. 6
2.1 Vehicle detection …………………………………………………… 6
2.2 Vehicle verification ……………………………………………….. 13
2.3 Vehicle tracking …………………………………………………... 14
Chapter 3 Vehicle Detection ……………………………………………….. 18
3.1 Edge extraction …………………………………………………… 18
3.2 Lane detection ……………………………………………………. 20
3.3 Generation of bi-level images ……………………………………. 21
3.4 Extraction of significant horizontal edges ………………………... 22
3.5 Deletion of short horizontal edges ………………………………... 24
3.6 Generation of candidate vehicles ………………………………… 29
3.6.1 Checking vertical edge patency above horizontal edge ……. 29
3.6.2 Finding the symmetrical vertical edge pair ………………… 32
Chapter 4 Vehicle Verification ……………………………………………... 35
4.1 Deletion of overlapping candidate vehicles ………………………. 35
4.2 Support vector machine …………………………………………... 36
4.3 Stabilization of detected results …………………………………... 39
4.4 Estimation of preceding vehicle distance ………………………… 40
Chapter 5 Experiments …………………………………………………….. 42
5.1 Developing platform ……………………………………………… 42
5.2 Experiment results ………………………………………………... 43
5.3 Discussions ……………………………………………………….. 50
Chapter 6 Conclusion and Future Works …………………………………... 52
6.1 Conclusion ………………………………………………………... 52
6.2 Future works ……………………………………………………… 53
參考文獻 [1] Armingol, J. M., A. de la Escalera, C. Hilario, J. M. Collado, J. P. Carrasco, M. J. Flores, J. M. Pastor, and J. Rodríquez, “IVVI: Intelligent vehicle based on visual information,” Robotics and Autonomous Systems, vol.55, no.12, pp.904-916, Dec. 2007.
[2] Bertozzi, M., A. Broggi, A. Fascioli, and S. Nichele, “Stereo vision-based vehicle detection,” in Proc. IEEE Intelligent Vehicles Sym., Dearborn, MI, Oct.3-5, 2000, pp.39-44.
[3] Betke, M., E. Haritaoglu, and L. S. Davis, “Real-time multiple vehicle detection and tracking from a moving vehicle,” Machine Vision and Applications, vol.12, no.2, pp.69-83, Sep. 2000.
[4] Broggi, A., P. Cerri, and P. C. Antonello, “Multi-resolution vehicle detection using artificial vision,” in Proc. IEEE Intelligent Vehicles Sym., Parma, Italy, Jun.14-17, 2004, pp.310-314.
[5] Chen, K.-W., Monocular Computer Vision Techniques for Road and Situation Detection, Master thesis, Computer Science and Information Engineering Dept., National Central Univ., Chung-li, Taoyuan, Taiwan, 2005.
[6] Chern, M.-Y., “Development of a vehicle vision system for vehicle/lane detection on highway,” in Proc. of the 18th IPPR Conf. on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug.21-23, 2005, pp.803-810.
[7] Chu, J., L. Ji, L. Guo, Libibing, and R. Wang, “Study on method of detecting preceding vehicle based on monocular camera,” in Proc. IEEE Intelligent Vehicles Sym., Parma, Italy, Jun.14-17, 2004, pp.750-755.
[8] Clady, X., F. Collange, F. Jurie, and P. Martinet, “Cars detection and tracking with a vision sensor,” in Proc. IEEE Intelligent Vehicles Sym., Columbus, OH, Jun.9-11, 2003, pp.593-598.
[9] Collado, J. M., C. Hilario, A. de la Escalera, and J. M. Armingol, “Model based vehicle detection for intelligent vehicles,” in Proc. IEEE Intelligent Vehicles Sym., Parma, Italy, Jun.14-17, 2004, pp.572-577.
[10] Du, Y. and N. P. Papanikolopoulos, “Real-time vehicle following through a novel symmetry-based approach,” in Proc. IEEE Int’l Conf. on Robotics and Automation, Albuquerque, NM, Apr.20-25, 1997, pp.3160-3165.
[11] Gao, D., W. Li, J. Duan, and B. Zheng, “Practical method of road detection for intelligent vehicle,” in Proc. IEEE Int’l Conf. on Automation and Logistics, Shenyang, China, Aug.5-7, 2009.
[12] Goerick, C., D. Noll, and M. Werner, “Artificial neural networks in real time car detection and tracking applications,” Pattern Recognition Letters, vol.17, no.4, pp.335-343, 1996.
[13] Handmann, U., T. Kalinke, M. Werner, and W. V. Seelen, “An image processing system for driver assistance,” Image and Vision Computing, vol.18, no.5, pp.367-376, Apr. 2000.
[14] Hoffmann, C., T. Dang, and C. Stiller, “Vehicle detection fusing 2D visual features,” in Proc. IEEE Intelligent Vehicles Sym., Parma, Italy, Jun.14-17, 2004, pp.280-285.
[15] Hsieh, W.-C., L.-C. Fu, and S.-S. Huang, “Vision based obstacle warning system for on-road driving,” in Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, Las Vegas, NV, Oct.27-31, 2003, pp.3668-3773.
[16] Huang, S.-S., C.-J. Chen, P.-Y. Hsiao, and L.-C. Fu, “On-board vision system for lane recognition and front-vehicle detection to enhance deriver’s awareness,” in Proc. IEEE Int’l Conf. on Robotics and Automation, New Orleans, LA, Apr.26-May 1, 2004, pp.2456-2461.
[17] Huang, Y.-C. and D.-C. Tseng, “A vision-based vehicle to vehicle detection and tracking system,” in Proc. of the 18th IPPR Conf. on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug.21-23, 2005, pp.866-873.
[18] Jin, L.-S., B.-Y. Gu, R.-B. Wang, L. Guao, Y.-B. Zhao, and L.-H. Li, “Preceding vehicle detection based on multi-characteristics fusion,” in Proc. IEEE Int’l Conf. on Vehicular Electronics and Safety, Beijing, China, Dec.13-15, 2006, pp.356-360.
[19] Kate, T. K., M. B. van Leewen, S. E. Moro-Ellenberger, B. J. F. Dressen, A. H. G. Versluis, and F. C. A. Groen, “Mid-range and distant vehicle detection with a mobile camera,” in Proc. IEEE Intelligent Vehicles Sym., Parma, Italy, Jun.14-17, 2004, pp.72-77.
[20] Leung, B., Component-based Car Detection in Street Scene Images, Technique Report, Massachusetts Institution of Technology, 2004.
[21] Lin, C-W., H.-Y. Wang and D.-C. Tseng, “A robust lane detection and verification method for intelligent vehicles,” in Proc. of The 3rd Int’l. Conf. on Intelligent Information Technology Application, Nachang, China, Nov.21-22, 2009, pp.521-524.
[22] Metthews, N. D., P. E. An, D. Charnley, and C. J. Harris, “Vehicle detection and recognition in grayscale imagery,” Control Engineering Practice, vol.4, no.4, pp.473-479, 1996.
[23] Schwarzinger, M., T. Zielke, D. Noll, M. Brauckmann, and W. Von Seelen, “Vision-based car-following detection tracking and identification,” in Proc. IEEE Intelligent Vehicles Sym., Detroit, MI, Jun.29-Jul.1, 1992, pp.24-29.
[24] Shyr, B.-Y., Daytime Detection of Leading and Neighboring Vehicles on Highway: A Major Capability for the Driver Assistant Vision System, Master thesis, Electrical Engineering Dept., National Chung Cheng Univ., Chia-yi, Taiwan, 2003.
[25] Srinivasa, N., “Vision-based vehicle detection and tracking method for forward collision warning in automobiles,” in Proc. IEEE Intelligent Vehicle Sym., Malibu, CA, Jun.17-21, 2002, pp.626-631.
[26] Sun, Z., G. Bebis, and R. Miller, “On-road vehicle detection using gabor filters and support vector machine,” in Proc. IEEE Int’l. Conf. on Digital Signal Processing, Santorini, Greece, Jul.1-3, 2002, pp.1019-1022.
[27] Sun, Z., G. Bebis, and R. Miller, “Quantized wavelet features and support vector machines for on-road vehicle detection,” in Int’l. Conf. on Control, Automation, Robotics and Vision, Singapore, Dec.2-5, 2002, pp.1641-1646.
[28] Sun, Z., G. Bebis, R. Miller, and D. Dimeo, “A real-time precrash vehicle detection system,” in Proc. Int’l. Workshop on Application of Computer Vision, Orlando, FL, Dec.3-4, 2002, pp.171-176.
[29] Sun, Z., G. Bebis, and R. Miller, “On-road vehicle detection: A review,” IEEE, Trans. Pattern Analysis and Machine Intelligence, vol.28, no.5, pp.694-711, May, 2006.
[30] Tseng, D.-C., Monocular Computer Vision Aided Road Vehicle Driving for Safety, U.S. Patent, No. 6765480, Jul. 20, 2004.
[31] Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
[32] Wang, C.-C., and J.-J. Lien, “Automatic vehicle detection using local features–A statistical approach,” IEEE Trans. Intelligent Transportation Systems, vol.9, no.1, pp.83-96, Mar. 2008.
[33] Zielke, T., M. Brauckmann, and W. Von Seelen, “Intensity and edge-based symmetry detection with an application to car-following,” CVGIP: Image Understanding, vol.56, no.2, pp.177-190, 1993.
指導教授 曾定章(Din-chang Tseng) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明