博碩士論文 975201046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.148.145.215
姓名 蔡翊翔(I-Hsiang Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波功率放大器線性度改善研究
(A study of linearity improvement for microwave power amplifier)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要分為兩個部分,第一部份:利用量測砷化鎵異質接面雙極性電晶體的增益壓縮與相位漂移特性,經過公式轉換後取得描述電晶體非線性特性的輸出電壓之實部與虛部對輸入電壓的冪級數係數,再經過計算後用來預測電晶體在實際調變訊號(CDMA IS-95)下對於不同輸入功率的輸出頻譜特性以及鄰近通道功率比例。第二部份:利用0.5 μm pHEMT製程設計3.5 GHz線性化功率放大器,利用共閘級電晶體動態調整功率放大器的偏壓改善功率放大器的線性度。量測結果功率增益、輸出功率、最大功率附加效率分別為11 dB、29 dBm、31 %。0.18 μm CMOS製程設計2.4 GHz線性化功率放大器,利用前饋式元件提供二倍頻訊號消除的路徑改善功率放大器的線性度。量測結果功率增益、輸出功率、最大功率附加效率分別為16 dB、21 dBm、17 %;在輸出功率為12 dBm下,相對星座圖向量誤差量測結果為5.6 %,滿足IEEE 802.11 g系統的規格。
摘要(英) The research content divides into two parts: First, measured GaAs-based heterojunction bipolar transistor amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) characteristics. Obtain the power series coefficients of output voltage real part and image part versus input voltage to describe the transistor non-linear characteristics using a formulation. After calculation can prediction the transistors output spectrum characteristics and adjacent channel power ratio under different output power with a CDMA IS-95 signal. Secondly, a 3.5 GHz linearity power amplifier in WIN 0.5 μm pHEMT process, a common gate transistor can adjust power amplifier bias to improve linearity. The power amplifier exhibits power gain of 11 dB, saturation output power of 29 dBm, maximum power-added efficiency of 31 %. A 2.4 GHz linearity power amplifier in TSMC 0.18 μm CMOS process, the feed-forward device offer second harmonic signal injection route to improve linearity. The power amplifier exhibits power gain of 16 dB, saturation output power of 21 dBm, maximum power-added efficiency of 17 %. The measured error vector magnitude was 5.6 % under an output power of 12 dBm using 2.4 GHz IEEE 802.11 g OFDM 64-QAM signal.
關鍵字(中) ★ 線性度
★ 功率放大器
關鍵字(英) ★ power amplifier
★ linearity
論文目次 摘要 ............................................................................................................................................ I
Abstract ................................................................................................................................... II
致謝 ......................................................................................................................................... III
目錄 ......................................................................................................................................... IV
圖目錄 ..................................................................................................................................... VI
表目錄 ...................................................................................................................................... X
第一章 緒論 .................................................................................................................... 1
1.1 研究背景與動機 ................................................................................................ 1
1.2 相關研究現況 .................................................................................................... 2
1.3 論文架構 ............................................................................................................ 4
第二章 微波功率放大器基本原理與線性度改善 ........................................................ 5
2.1 簡介 .................................................................................................................... 5
2.2 微波功率放大器基本原理 ................................................................................ 5
2.2.1 主動電晶體選擇 ................................................................................................ 5
2.2.2 功率放大器的分類 ............................................................................................ 6
2.2.3 電路穩定性考量 ................................................................................................ 7
2.2.4 輸入與輸出阻抗匹配 ........................................................................................ 8
2.3 微波功率放大器非線性 .................................................................................... 9
2.3.1 增益壓縮與相位漂移 ........................................................................................ 9
2.3.2 交互調變失真 .................................................................................................. 11
2.3.3 鄰近通道功率比例 .......................................................................................... 12
2.3.4 誤差向量幅度 .................................................................................................. 14
2.4 功率放大器線性化方法 ............................................................................................... 14
2.4.1 預先失真線性化技術 ...................................................................................... 14
2.4.2 前饋式線性化技術 .......................................................................................... 15
2.4.3 負回授線性化技術 .......................................................................................... 16
2.4.4 數位預先失真線性化技術 .............................................................................. 17
2.4.5 波包消除重建法 .............................................................................................. 18
V
2.5 結論 .................................................................................................................. 18
第三章 非線性效應計算 .............................................................................................. 19
3.1 簡介 .................................................................................................................. 19
3.2 非線性效應係數粹取 ...................................................................................... 20
3.3 計算輸出頻譜特性 .......................................................................................... 27
3.4 量測與模擬結果 .............................................................................................. 29
3.4.1 量測架構 .......................................................................................................... 29
3.4.2 調變訊號量測結果 .......................................................................................... 31
3.5 結論 .................................................................................................................. 38
第四章 線性度改善功率放大器 .................................................................................. 39
4.1 簡介 .................................................................................................................. 39
4.2 3.5 GHz E-mode pHEMT線性化功率放大器 ................................................ 39
4.2.1 E-mode pHEMT線性化功率放大器設計 ....................................................... 39
4.2.2 E-mode pHEMT線性化功率放大器量測與結果比較 ................................... 45
4.3 2.4 GHz CMOS線性化功率放大器 ................................................................ 54
4.3.1 CMOS線性化功率放大器設計 ....................................................................... 54
4.3.2 CMOS線性化功率放大器量測與結果比較 ................................................... 60
4.4 結論 .................................................................................................................. 69
第五章 結論 .................................................................................................................. 70
參考文獻 ................................................................................................................................. 71
附錄A 2.4 GHz BiFET線性化功率放大器 ........................................................................... 74
A.1 BiFET線性化功率放大器設計 ....................................................................... 74
A.2 BiFET線性化功率放大器量測與結果比較 ................................................... 77
A.3 結論 .................................................................................................................. 80
附錄B 2.4 GHz SiGe線性化功率放大器 ............................................................................... 81
B.1 SiGe線性化功率放大器設計 .......................................................................... 81
B.2 SiGe線性化功率放大器量測與結果比較 ...................................................... 85
B.3 結論 .................................................................................................................. 86
附錄C 口試問題回答 ............................................................................................................. 87
參考文獻 [1]
IEEE std. 802.11a-1999, “Part11: wireless lan medium access control(MAC) and physical layer(PHY) specifications: high-speed physical layer in the 5 GHz band.” IEEE std. 802.11a-1999, Dec. 1999
[2]
IEEE std. 802.11gTM-2003, “Part 11: wireless lan medium access control(MAC) and physical layer(PHY) specifications amendment 4: further higher data rate extension in the 2.4 GHz band.” IEEE std. 802.11gTM-2003, pp.i-67, June 2003
[3]
Shingo Yamanouchi, Yuuichi Aoki, Kazuaki Kunihiro, Tomohisa Hirayama, Takashi Miyazaki, and Hikaru Hida, “Analysis and Design of a Dynamic Predistorter for WCDMA Handset Power Amplifiers,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 3, MARCH 2007
[4]
Cheng-Chi Yen, and Huey-Ru Chuang, “A 0.25 um 20 dBm 2.4 GHz CMOS Power Amplifier With an Integrated Diode Linearizer,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 2, FEBRUARY 2003
[5]
Sangwon Ko, and Jenshan Lin, “A Novel Linearizer and a Fully Integrated CMOS Power Amplifier,” Asia-Pacific Microwave Conference, 2006
[6]
Hsien-Yuan Liao, Jhih-Hong Chen, Hwann-Kaeo Chiou, and Cheng-Chung Chen, “High-Linearity CMOS Feedforward Power Amplifier for WiMAX application,” Asia-Pacific Microwave Conference, 2008
[7]
陳聖寬, “順向回饋式寬頻功率放大器研製” 碩士論文, 國立台灣大學, 2001
[8]
Marian K. Kazimierczuk, “RF Power Amplifier” A John and Sons, Ltd., Publication, 2008
[9]
杜至庸, “線性化射頻功率放大器之數位基頻預失真技術之研究” 碩士論文, 國立中山大學, 2007
[10]
林世豪, “應用在WiMAX基地台高功率放大器之數位預失真線性化技術研究” 碩士論文, 國立中山大學, 2008
[11]
杜孟哲, “採用極座標調制之射頻發射機” 碩士論文, 國立中山大學, 2004
[12]
Steve C. Cripps, “RF Power Amplifiers for Wireless Communication” Artech House, Inc., 1999
[13]
Guillermo Gonzalez “ Microwave Transistor Amplifiers Analysis and Design ” Prentice-Hall, Inc., 1998
[14]
魏吉鴻, “微波積體化功率放大器設計及研製” 碩士論文, 國立中央大學, 2002
71
[15]
何岳龍, “高效率與線性度的功率放大器設計” 碩士論文, 國立中央大學, 2003
[16]
Kevin Gard, “Autocorrelation Analysis of Spectral Regrowth Generated by Nonlinear Circuit in Wireless Communication Systems,” PhD dissertation, UC SAN DIEGO, 2003
[17]
Joel H. K. Vuolevi, Timo Rahkonen, and Jani P. A. Manninen, “Measurement Technique for Characterizing Memory Effects in RF Power Amplifiers,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 8, AUGUST 2001
[18]
Wang Huadong, Wu Zhengde, Bao Jinfu, and Tang Xiaohong, “Analyzing Memory Effect in RF Power Amplifier using Three-box Modeling,” Asia-Pacific Microwave Conference, 2005
[19]
Fan-Hsiu Huang, Hong-Yeh Chang, and Yi-Jen Chan, “A Linearity Improved GaAs pHEMT Power Amplifier using Common-Gate/Common-Source Circuit Topology,” European Microwave Integrated Circuits Conference, 2009
[20]
Chengzhou Wang, Mani Vaidyanathan, and Lawrence E. Larson, “A Capacitance-Compensation Technique for Improved Linearity in CMOS Class-AB Power Amplifiers,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 11, NOVEMBER 2004
[21]
Shigeo Kusunoki, Katsuji Kawakami, and Tadanaga Hatsugai, “Load-Impedance and Bias-Network Dependence of Power Amplifier With Second Harmonic Injection,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 9, SEPTEMBER 2004
[22]
M. Miyashita, T. Okuda, H. Kurusu, S. Shimamura, S. Konishi, J. Udomoto, R. Matsushita, Y. Sasaki, S. Suzuki, T. Miura, M. Komaru and K Yamamoto,“ Fully Integrated GaAs HBT MMIC Power Amplifier Modules for 2.5/3.5-GHz-Band WiMAX Applications”, Compound Semiconductor Integrated Circuit Symposium, 2007
[23]
Amiza Rasmi, A. Marzuki, A. I. Abd Rahim , M. Razman Yahya, and A. Fatah Awang Mat, “A 3.5 GHz Medium Power Amplifier Using 0.15 μm GaAs PHEMT for WiMAX Applications,” Asia Pacific Microwave Conference, 2009
[24]
Chen-Kuo Chu, Hou-Kuei Huang, Hong-Zhi Liu, R. J. Chiu, Che-Hung Lin, Chih-Cheng Wang, Mau-Phon Houng, Yeong-Her Wang, Chuan-Chien Hsu, Wang Wu, Chang-Luen Wu and Chian-Sern Chang, “A fully matched high linearity 2-W PHEMT MMIC power amplifier for 3.5 GHz applications,” Microwave and Wireless Components Letters, IEEE , vol.15, no.10, pp. 667-669, Oct. 2005
72
[25]
Jongchan Kang, Jehyung Yoon, Kyoungjoon Min, Daekyu Yu, Joongjin Nam, Youngoo Yang, and Bumman Kim, “A Highly Linear and Efficient Differential CMOS Power Amplifier With Harmonic Control,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 6, JUNE 2006
[26]
Rimal Deep Singh, and Kyung-Wan Yu, “A Linear Mode CMOS Power Amplifier with Self-Linearizing Bias,” IEEE Asian Solid-State Circuits Conference, 2006
[27]
Jongchan Kang, Ali Hajimiri, and Bumman Kim, “A single-chip linear CMOS power amplifier for 2.4 GHz WLAN,” IEEE International Solid-State Circuits Conference, 2006
[28]
RTC6698H, in Richwave data sheet
[29]
ATR7032, “High Gain Power Amplifier for 802.11b/g WLAN Systems,” in Atmel data sheet
[30]
T7031, “2.4 GHz SiGe ower Amplifier for 802.11b/g WLAN Systems,” in Atmel data sheet
[31]
AWL6951, “2.4/5 GHz 802.11a/b/g/n WLAN Power Amplifier,” inAnadigics data sheet
[32]
AWL9224, “2.4 GHz 802.11b/g WLAN Power Amplifier,” inAnadigics data sheet
[33]
AWL9924, “2.4/5 GHz 802.11a/b/g WLAN Power Amplifier,” inAnadigics data sheet
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2010-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明