博碩士論文 975202083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.12.73.149
姓名 張百耀(Pai-Yao Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以統計質心雷射測距法量測物體表面結構
(Statistical Centroid-based Laser Striped Lighting Method for Surface Profilmetry)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究中,我們使用三角雷射測距法量測物體表面的三維結構。質心法一直以來常被用來擷取雷射條紋中心的方法;其他方法如Catmull-Rom曲線內插法、二次多項式逼近、三次多項式逼近、及高斯曲線逼近,都有被用在雷射條紋中心擷取。在本研究中,我們提出了一個統計法改進原本傳統的質心法來擷取雷射條紋中心。我們首先分析了條紋橫切面的灰階變異分佈並建立查表,然後給予每個條紋位置不同的權重值來補償變異過大的位置。我們也提出了一個估計雷射光平面角度的方法。在現實環境中雷射光平面本身存在著一個自我偏轉的角度,我們很難完美地去調整到期待的角度,因此我們分析了雷射光平面與平台的幾何關係,並提出一項公式來補償因雷射裝置偏轉而造成的夾角變化。在實驗中,我們比較了不同雷射條紋中心擷取法的穩定度與執行效率。我們的影像解析度為1536×512像素,視野範圍為16.45×5.48mm2,使用二極體雷射,雷射發散角度為30度。由實驗結果我們得到統計質心法對於擷取雷射條紋中心有最好的穩定性及效率組合。
摘要(英) In this study, we use striped lighting method to measure the 3-D surface structures. The centroid method was widely used for laser stripe extraction. The other methods such as Catmull-Rom splines interpolation, quadratic curve fitting, cubic curve fitting, and Gaussian curve fitting are also used for laser stripe extraction. In this study, we propose a new method which is modified from centroid method to extract laser stripes. We analyze the distribution of intensity variance of stripe profiles. Based on the distribution of intensity variance, we build up a table to give every location a weight value which can compensate the random error of laser stripe. We also propose a method to estimate the orientation of laser plane. Because the laser emitter is not always perfectly in a desired angle, it is hard to adjust the angle around the axis of rotation of the laser emitter. We analyze the relationship between the laser stripe from the image and the angle around the axis of rotation of the laser emitter. A formula is proposed to compensate the angle in every location of laser stripe. In the experiment, we compared the stability and performance of different laser stripe extraction methods. The resolution of the CCD camera is 1536×512. The FOV of the camera is about 16.45×5.48mm2. The laser emitter has 50mW diode power, 660nm wavelength, and 30° fan angle. The experimental results show that the statistical centroid method has high stability and good performance in laser extraction.
關鍵字(中) ★ 雷射測距
★ 深度量測
關鍵字(英) ★ surface profilmetry
★ laser striped lighting method
論文目次 Abstract ii
Contents iii
List of Figures v
List of Tables viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 System overview 2
1.2.1 Laser stripe extraction 4
1.2.2 Laser plane orientation estimation 4
1.2.3 Analysis of laser plane 4
1.3 Thesis organization 5
Chapter 2 Related works 6
2.1 Image-based methods 6
2.2 Structured-light methods 9
2.3 Laser stripe detection 13
Chapter 3 Striped lighting method 15
3.1 Optical triangulation 15
3.2 Striped lighting method 17
3.3 Image preprocessing 19
3.3.1 Speckle noise 19
3.3.2 Spatial Averaging 20
3.3.3 Grayscale morphology 22
Chapter 4 Laser stripe extraction 25
4.1 Least square fitting methods 25
4.1.1 Quadratic curve fitting approximate 25
4.1.2 Cubic curve fitting approximate 27
4.1.3 Gaussian curve fitting approximate 29
4.2 Catmull-rom splines interpolation 31
4.3 Centroid method 34
4.4 Stability of laser stripes 35
4.4.1 Analysis of noise of laser stripe 35
4.4.2 Statistical centroid method 36
Chapter 5 Analysis of laser planes 38
5.1 Deflection compensation of laser plane 38
5.2 Estimation of laser-plane angle 45
Chapter 6 Experiments 52
6.1 Hardware architecture 52
6.2 Experimental results 54
6.2.1 Stability of the intensity of laser stripe 54
6.2.2 Stability of stripe extraction methods and filters 57
6.2.3 Accuracy of stripe extraction methods and filters 67
6.2.4 Performance of extraction methods and filters 73
6.2.5 Result of laser plane compensation 74
6.3 Discussions 76
Chapter 7 Conclusion and future works 77
7.1 Conclusions 77
7.2 Future works 77
References 79
參考文獻 [1] Baribeau, R. and M. Rioux, "Influence of speckle on laser range finders," Applied Optics, vol.30, no.20, pp.2873-2878, 1911.
[2] Barnard, S. T. and M. A. Fischler, "Computational stereo," ACM Computing Surveys, vol.14, no.4, pp.553-572, 1982.
[3] Bidanda, B., S. Motavalli, and K. Harding, "Reverse engineering: an evaluation of prospective non-contact technologies and application in manufacturing systems," International Journal of Computer Integrated Manufacturing, vol. 4, no.3, pp.145-156, 1991.
[4] Boyer, K. L. and A. C. Kak, "Color-encoded structured light for rapid active ranging," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.9, no.1, pp.14-18, 1987.
[5] Catmull, E. and R. Rom, "A class of local interpolating splines," in Computer Aided Geometric Design, R. E. Barnhill and R. F. Reisenfeld, eds., Academic Press, New York, pp.317–326, 1974.
[6] Chen, T., L. Zhang, G. Zhang, and B. Chen, "Design of a displacement angle measurement system based on laser triangulation principle," in Proc. Int. Technology and Innovation Conf., Hangzhou, China, Nov.6-7, 2006, pp.319-322.
[7] Davis, J., R. Ramamoorthi, and S. Rusinkiewicz, "Spacetime stereo: a unifying framework for depth from triangulation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.27, no.2, pp.296-302, 2005.
[8] Del Taglia, A., A. Paoluccia, and M. Santochi, "The shadow-moiré method applied to 3D model copying," CIRP Annals - Manufacturing Technology, vol.44, no.1, pp.497-500, 1995.
[9] Dorsch, R., G. Hausler, and J. Herrmann, "Laser triangulation: fundamental uncertainty in distance measurement," Applied Optics, vol.33, no.7, pp.1306-1314, 1994.
[10] Fechteler, P., P. Eisert, and J. Rurainsky, "Fast and high resolution 3D face scanning," in Proc. IEEE Int. Conf. Image Processing, Berlin, Germany, Sept.16-19, 2007, pp.81-84.
[11] Izquierdo, M. A. G., M. T. Sanchez, A. Ibañez, and L. G. Ullate, "Sub-pixel measurement of 3D surfaces by laser scanning," Sensors and Actuators A: Physical, vol.76, no.1, pp.1-8, 1999.
[12] Jung, H. G., and J. Kim, "Model-based light stripe detection for indoor navigation," Optics and Lasers in Engineering, vol.47, no.1, pp.62-74, 2009.
[13] Kim, D. J., W. S. Chang, S. K. Park, S. H. Baik, and C. J. Kim, “A study on a 3-D profilemeter using dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light,” in Proc. IEEE Region 10 Conf., Cheju Island, South Korea, Sep.15-17, 1999, pp.1371-1374.
[14] Kinnstaetter, K., A. W. Lohmann, J. Schwider, and N. Streibl, "Accuracy of phase shifting interferometry," Applied Optical, vol.27, no.24, pp.5082-5089, 1988.
[15] Martínez, U., B. Valera, J. Sánchez, and V. García, "Vision system for subpixel laser stripe profile extraction with real time operation," in Proc. Iberoamerican Congress on Pattern Recognition, Havana, Cuba, Nov.26-29, 2003, pp.38-45.
[16] Muñoz-Rodríguez, J. A., "Binocular imaging of a laser stripe and approximation networks for shape detection", Int. Journal of Imaging Systems and Technology archive, vol.17, no.2, pp.62-74, 2007.
[17] Nayar, S. K. and Y. Nakagawa, "Shape from focus: an effective approach for rough surfaces", in Proc. IEEE Int. Conf. Robotics and Automation, Cincinnati, Ohio, May.13-18, 1990, pp.218-225.
[18] Noguchi, M. and S. K. Nayar, "Microscopic shape from focus using active illumination," in Proc. 12th Int. Conf. Pattern Recognition, Jerusalem, Israel, Oct.9-13, 1994, pp.147-152.
[19] Toyooka, S. and Y. Iwaasa, "Automatic profilometry of 3-D diffuse objects by spatial phase detection," Applied Optical, vol.25, no.10, pp.1630-1633, 1986.
[20] Wang, W.-H., J.-H. Sun, Z. Liu, and G.-J. Zhang, "Stripe center extraction algorithm for structured-light in rail wear dynamic measurement," Laser and Infrared, vol.40, no.1, pp.87-90, 2010.
[21] Whitehouse, D. J., "Surface metrology," Measurement Science and Technology, vol.8, no.9, pp.955-972, 1997.
[22] Xiong, H.-Y., Z.-J. Zong, C.-H. and Chen, "Accurately extracting full resolution centers of structured light stripe," Optics and Precision Engineering, vol.17, no.5, pp.1057-1062, 2009.
[23] Zhang, L., B. Curless, and S. Seitz, "Spacetime stereo: shape recovery for dynamic senses," in Proc. Computer Vision and Pattern Recognition, Madison, Wisconsin, Jun.16-22, 2003, pp367-374.
[24] Zhu, W.-J., K.-H. Jiao, C.-G. Xu, and D.-G. Xiao, "Extraction of laser stripe center line based on genetic algorithm and nurbs interpolation," Journal of Beijing Institute of Technology, vol.17, no.2, pp.143-147, 2008.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明