參考文獻 |
Reference
[1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
[4] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang“The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength"IEEE J. Quantum Electron., vol. 45, no. 7, July 2009
[5] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” in Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
[6] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers” IEEE, Photon. Technol. Lett. , vol. 2, 234, 1990.
[7] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, Feb. 2004.
[8] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, Member IEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
[9] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. ,vol 85, no. 22, Nov. 2004.
[10] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001
[11] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007
[12] Chang, Y.-C., Wang, C.S., and Coldren, L.A.: ‘Small-dimension powerefficient high-speed vertical-cavity surface-emitting lasers’, Electron. Lett., 2007, 43, pp. 396–397
[13] Speed 1.1-μm-Range VCSELs With InGaAs/GaAsP-MQWs”, IEEE J. Quantum Electron. , vol. 46, no. 6, June 2010.
[14] Sorcha B. Healy, Eoin P. O’Reilly, Johan S. Gustavsson, Petter Westbergh, Åsa Haglund, Anders Larsson, and Andrew Joel, “Active Region Design for High-Speed 850-nm VCSELs”, IEEE J. Quantum Electron., vol. 46, no. 4, Apr. 2010
[15] P.Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, 2009.
[16] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett., vol. 45, no. 10, pp. 501–503, 2009.
[17] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber”, Elec. Lett. 13th, vol. 26 No.19,(1990)
[18] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser”, Soc. Photo-opt Instrun. Eng.,vol. 1418, pp.414-421,(1991).
[19] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang,”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser”, Appl. Phys. Lett., 58, pp.1780-1782(1991).
[20] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures.” J. Appl. Phys. ,73, pp3769-3781 (1993).
[21] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion ” J. Appl. Phys.55, p.607(1984).
[22] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion“ Appl.Phys.Lett.38,776,(1981).
[23] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice”Semicond. Sci. Technol., 4, pp.841-846, (1989).
[24] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90年)
[25] R. G. Hunsperger, Integrated Optics:Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[26] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett. 47, p.1193, (1985).
[27] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[28] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., vol. 36, p. 3770, (1965).
[29] M. Ochiai et al., Appl. Phys. Lett., 68, 1898(1996)][J. H. Kim , Appl. Phys. Lett. ,69, 3357(1996).
[30] Kent D. Choquette, Member, IEEE, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, Member, IEEE, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, June 1997.
[31] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1237, (1995).
[32] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360 (1993).
[33] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1935-1837 (1996).
[34] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, pp.740-742,(1996).
[35] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,”Appl. Phys. Lett., vol 66, pp.1723-1725, (1995).
[36] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[37] Hermann A. Haus,”Waves and Fields in Optoelectronics”(1984).
[38] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
[39] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, J. Quantum Electron., 33, 1810-1824,(1997).
[40] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[41] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
[42] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley October 1995.
[43] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[44] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[45] Chao-Kun Lin, Member, IEEE, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, Sep./Oct. 2007.
[46] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang” The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength” IEEE J. Quantum Electron.
[47] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett.,vol. 43, no. 19, pp. 1022–1023, Sep. 13, 2007.
|