博碩士論文 975202063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:18.116.43.109
姓名 楊小璿(Siao-syuan Yang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 強化特徵偵測與三維臉部特徵點匹配的頭部姿勢估計法
(Head Pose Estimaiton based on 2D and 3D Face Feature Points)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 駕駛分心是造成交通事故最重要的因素,因此駕駛昏睡偵測與注意力偵測即為輔助安全駕駛中重要的一環。我們以電腦視覺偵測技術偵測駕駛昏睡程度與頭部方向判斷駕駛的專心程度。根據人臉特徵點在影像與三維空間座標的對應關係,我們提出一個頭部姿勢估測方法來推測出頭部轉動方向。為了估計出準確的頭部姿勢,我們提出強化的特徵偵測方法來提高特徵點位置的準確度。特徵偵測包括眼睛與嘴巴,考慮到行駛中車輛的環境變化,我們的特徵偵測方法可以適應於不同的光影變化的環境與變換的頭部姿勢。
在眼睛偵測部分,我們先針對影像上不同照度的區域找出適合的二值化門檻值並且標記連通區域。因為光影或頭部角度的影響,導致眼睛區塊與背景無法順利分割,所以我們接著提出一個可以將突起區塊分割出來的方法,並且以幾何條件的限制篩選出可能是眼睛的物件,最後我們使用支援向量機做眼睛的驗證。嘴巴的位置則是分析眼睛位置的相對關係,再偵測出來的。獲得特徵區塊之後,我們在這些區塊上偵測出特徵點的位置作為估計頭部姿勢的二維資料。我們根據個人化的人臉模型特徵點位置以三維轉換到二維的最小平方誤差估計法求解頭部姿勢參數。
摘要(英) The distraction of the driver is the main factor of traffic accident. Hence, the driver drowsiness detection and the driver attention detection are important in safety vehicle system. We use computer vision techniques to detect driver drowsiness or head orientation and determine the concentration of the driver. On the basis of the image coordinates and 3D coordinates of face feature points, we propose an approach of head pose estimation to infer the rotation angles of head. In order to estimate head pose accurately, we enhance feature detection to increase the precision of feature point. Feature detection contains eye and mouth detection. Considering the environment of the moving car, our method can be applied on variant-illumination and different head pose.
For eye detection, we find the suitable threshold for binarization at different illumination regions and process connected-component generation. The eye region might be connected with background because of shade or head angle. Hence, we proposed a method that separates raised region from object and apply geometric constraints to obtain eye candidates. Finally, we verify eye using support vector machines. Mouth region can be analyzed according to the location relative to eyes. Then, we detect feature points on the feature region as the 2D data for head pose estimation. We estimate head pose parameters using 3D/2D transformation and least square method according to the feature points of a personal face model.
關鍵字(中) ★ 頭部姿勢估計
★ 眼睛偵測
★ 嘴巴偵測
★ 三維/二維轉換
關鍵字(英) ★ 3D/2D transformation
★ mouth detection
★ eye detection
★ head pose estimation
論文目次 摘要 ..................................................II
誌謝 .................................................III
目錄 ..................................................IV
第一章 緒論 ...........................................一
第二章 相關研究 .......................................二
第三章 眼睛偵測與驗證 .................................三
第四章 嘴巴偵測 .......................................四
第五章 實驗 ...........................................五
第六章 結論 ...........................................六
附 錄 英文版論文 ....................................七
Contents
Abstract ............................................................................................................. ii
Contents............................................................................................................iii
List of Figures ................................................................................................... v
List of Tables..................................................................................................... x
Chapter 1 Introduction ...................................................................................... 1
1.1 Motivation ............................................................................................ 1
1.2 System overview .................................................................................. 2
1.3 Thesis organization .............................................................................. 4
Chapter 2 Related Work .................................................................................... 6
2.1 Head pose estimation ........................................................................... 6
2.2 Face feature extraction ......................................................................... 8
2.3 Eye-corner detection .......................................................................... 12
Chapter 3 Eye Detection and Verification ...................................................... 15
3.1 Image segmentation ........................................................................... 15
3.1.1 Vertical division........................................................................ 16
3.1.2 Horizontal division................................................................... 20
3.2 Iterative thresholding ......................................................................... 22
3.3 Connected-component generation...................................................... 23
3.4 Convex shape separation.................................................................... 25
3.4.1 Concept of separating convex part of objects.......................... 26
3.4.2 Algorithm of separating convex part of object......................... 27
3.5 Geometric constraints......................................................................... 31
3.6 Eye verification using support vector machine.................................. 32
3.6.1 The introduction of support vector machine ............................ 32
3.6.2 Training data for SVM.............................................................. 34
3.6.3 Verification of a pair of eyes .................................................... 35
3.7 Eye-corner detection .......................................................................... 36
Chapter 4 Mouth Detection............................................................................. 37
4.1 Mouth detection ................................................................................. 37
4.2 Mouth corner extraction..................................................................... 40
Chapter 5 Head Pose Estimation..................................................................... 42
5.1 Acquiring 3D feature points............................................................... 42
5.2 3D/2D transformation ........................................................................ 43
5.2.1 3D Geometric transformations ................................................ 44
5.2.2 Perspective/projection transformations ................................... 45
5.2.3 3D/2D transformations ............................................................ 46
5.3 Head pose estimation ......................................................................... 48
Chapter 6 Experiments.................................................................................... 53
6.1 The development environment........................................................... 53
6.2 Experimental results........................................................................... 54
6.2.1 Feature region detection .......................................................... 57
6.2.2 Feature point detection ............................................................ 64
6.2.3 Head pose estimation ............................................................... 66
Chapter 7 Conclusions and Future Works....................................................... 71
7.1 Conclusions ........................................................................................ 71
7.2 Future works....................................................................................... 72
References ....................................................................................................... 73
參考文獻 [1] Ahlberg, J., "An active model for facial feature tracking," EURASIP Journal. Applied Signal Processing, vol.2002, no.1, pp.566-571, 2002.
[2] Bartista, J., "A drowsiness and point of attention monitoring system for driver vigilance," in Proc. IEEE Conf. Intelligent Transportation Systems, Seattle, WA, Sep.30-Oct.3, 2007, pp.702-708.
[3] Bergasa et al., "Real-time system for monitoring driver vigilance," IEEE Trans. Intelligent Transportation Systems, vol.7, no.1, pp.63-77, 2006.
[4] Cortes, C. and V. N. Vapnik, "Support vector networks," Machine Learning, vol.20, no.3, pp.273-297, 1995.
[5] Dornaika, F. and F. Davoine, "On appearance based face and facial action tracking," IEEE Trans. Circuits and Systems for Video Technology, vol.16, no.9, pp.1104-1124, 2006.
[6] Edwards, G. J., C. J. Taylor, and T. F. Cootes, "Interpreting face images using active appearance models," in Proc. IEEE 3rd Int. Conf. Automatic Face and Gesture Recognition, Nara, Japan, Apr.14-16, 1998, pp.300-305.
[7] Feng, G. C. and P. C. Yuen, "Variance projection function and its application to eye detection for human face recognition," Pattern Recognition Letters, vol.19, no.9, pp.899-906, 1998.
[8] Graham, R. L., "An efficient algorith for determining the convex hull of a finite planar set," Information Processing Letters, vol.1, no.4, pp.132-133, 1972.
[9] Hager, H. and P. Belhumeur, "Efficient region tracking with parametric models of geometry and illumination," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.20, no.10, pp.1025-1039, 1998.
[10] Harris, C. and M. J. Stephens, "A combined method" in Alvey Vision Conf., 1988, pp.147–152.
[11] Ji, Q. and X. Yang, "Real-time nonintrusive monitoring and prediction of driver fatigue," IEEE Trans. Vehicular Technology, vol.53, no.4, pp.1052-1068, 2004.
[12] Jung, S. U. and J. H. Yoo, "Robust eye detection using self quotient image," in Proc. Int. Symp. Intelligent Signal Processing and Communication Systems, Dec.12-15, Tottori, Japan, 2006, pp.263-266.
[13] Lee, T., S. K. Park, and M. Park, "An effective method for detecting facial features and face in human-robot interaction," Journal Information Sciences, vol.176, no.21, pp.3166-3189, 2006.
[14] Lin, S. M., A Real-Time Driver Drowsiness Detection and Alertness Monitor System, Master Thesis, Computer Science and Information Engineering Dept., National Central Univ., Chungli, Taiwan, June 2007.
[15] Malciu, M. and F. Preteux, "A robust model-based approach for 3D head tracking in video sequences," in Proc. IEEE 4th Int. Conf. Automatic Face and Gesture Recognition, Grenoble, France, Mar.28-30, 2000, pp.169-174.
[16] Murphy-Chutorian, E. and M. M. Trivedi, "Head pose estimation in computer vision: a survey," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.4, pp.607-626, 2009.
[17] Peng Kun, L. Chen, S. Ruan, and G. Kukharev. "A robust algorithm for eye detection on gray intensity face without spectacles," Journal Computer Science and Technology, vol.5, no.3, pp.127-132, 2005.
[18] Smith, S. M. and J. M. Brady, "SUSAN-A new approach to low level image processing," Int. Journal Computer Vision, vol.23, no.1, pp.45-78, 1997.
[19] Tan, H. C. and Y. J. Zhang, "Detecting eye blink states by tracking iris and eyelids," Pattern Recognition Letters, vol.27, pp.667-675, 2006.
[20] Tsao, L.-J., Driver Drowsiness Detection and Warning under Various Illumination Conditions, Master Thesis, Computer Science and Information Engineering Dept., National Central Univ., Chungli, Taiwan, 2008.
[21] Vapnik, V. N., The Nature of Statistical Learning Theory, 2nd Ed, Springer-Verlag, Network, 1999.
[22] Vatahska, T., M. Bennewitz, and S. Behnke, "Feature-based head pose estimation from images," in Proc. 7th IEEE-RAS Int. Conf. Humanoid Robots, Pittsburgh, PA, Nov.29-Dec.1, 2007, pp.330-335.
[23] Wang, H., S. Z. Li, and Y. Wang, "Face recognition under varying lighting conditions using self quotient image," in Proc. 6th IEEE Int. Conf. Automatic Face and Gesture Recognition, May17-19, 2004, pp.819-824.
[24] Xia, H. and G. Yan, "A novel method for eye corner detection based on weighted variance projection function," in Proc. IEEE 2nd Int. Conf. Image and Signal Processing, Tianjin, China, Oct.17-19, 2009, pp.1-4.
[25] Xu, C., Y. Zheng, and Z. Wang, "Semantic feature extraction for accurate eye corner detection," in Proc. 19th IEEE Int. Conf. Pattern Recognition, Hefei, China, Dec.8-11, 2008, pp.1-4.
[26] Zhang, Z. Y., A Flexible New Technique for Camera Calibration, Technique Report MSR-TR-98-71, Microsoft Research, 2002.
[27] Zhang T., Y. Y. Tang, B. Fong, Z. Shang, and X. Liu, "Face Recognition under varying illumination using gradientfaces," IEEE Trans. Image Processing, vol.18, no.11, pp.2599-2606, 2009.
[28] Zhou, Z. and X. Geng, "Projection function for eye detection," Pattern Recognition, vol.37, no.5, pp.1049-1056, May, 2004.
[29] Zhu, Z., K. Fujimura, and Q. Ji, "Real-Time eye detection and tracking under various light conditions," in Proc. Eye Tracking Research & Application Sym., New Orleans, Louisiana, 2002, pp.139-144.
[30] Zhu, Z., Q. Ji, and P. Lan, "Real-time nonintrusive monitoring and prediction of driver fatigue," IEEE Trans. Vehicle Technology, vol.53, no.4, pp.1052-1068, 2004.
[31] Zhu, Z. and Q. Ji, "Robust real-time eye detection and tracking under variable lighting conditions and various face orientations," Computer Vision and Image Understanding, vol.98, no.1, pp.124-154, 2005.
指導教授 曾定章(Ding-chang Tseng) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明