以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:28 、訪客IP:3.138.126.124
姓名 李俊家(Chun-Chia Lee) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 Ku/K頻段壓控振盪器與Ku頻段注入鎖定式除頻器之研製
(Implementations on Ku/K-Band Voltage Controlled Oscillators and Ku-Band Injection Locked Frequency Dividers)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文包含兩主題,第一部份為壓控振盪器,對於相位雜訊的生成做描述並研製一K頻段與兩個Ku頻段壓控振盪器。第二部份為注入鎖定式除頻器,分別對不同的注入鎖定式除頻器架構作簡介,研製兩種不同形態的Ku頻段注入鎖定式除頻器。以上電路分別使用tsmcTM 0.18 µm與tsmcTM 0.13 µm CMOS製程實現電路設計。
第一部份設計為K頻段轉導提升式考畢茲壓控振盪器,解決傳統考畢茲振盪器不易起振的問題。使用tsmcTM 0.13 µm CMOS製程,其振盪中心頻率為25.64 GHz,可調頻率範圍為860 MHz,偏移主頻率1 MHz之相位雜訊為-108.3 dBc/Hz。在供應電壓為1.2 V下,功率消耗為3.06 mW。並計算優化參數(FOM)為-191.6 dBc/Hz,晶片面積為0.08 mm2。Ku頻段偏壓位移式壓控振盪器,解決傳統交錯耦合壓控振盪器使用電流源方式造成閃爍雜訊對於相位雜訊的干擾。並討論電晶體的偏壓方式,對壓控振盪器相位雜訊做最佳化。使用tsmcTM 0.18 µm CMOS製程,其振盪中心頻率為12.78 GHz,可調頻率範圍為780 MHz,偏移主頻率1 MHz之相位雜訊為-110 dBc/Hz。在供應電壓為1.0 V下,功率消耗為5.22 mW。並計算優化參數(FOM)為-185.2 dBc/Hz,晶片面積為0.33 mm2。Ku頻段電流重新使用轉導提升式考畢茲壓控振盪器,此方式減少壓控振盪器在電流的使用,降低整體的功率消耗。使用tsmcTM 0.18 µm CMOS製程,其振盪中心頻率為12.2 GHz,可調頻率範圍為1400 MHz,偏移主頻率1 MHz之相位雜訊為-107.1 dBc/Hz。在供應電壓為1.9 V下,功率消耗為1.0 mW。並計算優化參數(FOM)為-188 dBc/Hz,晶片面積為0.308 mm2。
第二部份為注入鎖定式除頻器之設計,Ku頻段振幅重新分佈式注入鎖定式除頻器,使用振幅重新分佈式架構,增加電晶體本身訊號雜訊比(SNR)並實現除二除頻器。使用tsmcTM 0.18 µm CMOS製程,在輸入功率為0 dBm下,鎖定頻寬範圍為11.7~14.4 GHz達20 %鎖定範圍。在供應電壓為1.0 V下,功率消耗為3.4 mW。計算優化參數(FOM)為6.45 % / mW,晶片面積為0.5 mm2。Ku頻段注入增強鎖定式除頻器,以傳統注入鎖定式除頻器為基本架構,串接一PMOS電晶體,在相同的直流功率消耗下,輸入信號可增加。提高信號注入的效率,增加可鎖定除頻的範圍,並以此架構實現除二除頻器。使用tsmcTM 0.18 µm CMOS製程,在輸入功率為0 dBm下,鎖定頻寬範圍為11.0~14.3 GHz達26 %的鎖定範圍。在供應電壓為1.0 V下,功率消耗為1 mW。計算優化參數(FOM)為26 % / mW,晶片面積為0.48 mm2。
摘要(英) The thesis studies two subjects. The first one is on voltage control oscillator design where one K-band and two Ku-band VCOs are demonstrated. The second one is on injection locked frequency divider (ILFD) design where two Ku-band ILFDs are demonstrated. Aforementioned circuits were implemented in tsmcTM 0.13 µm and 0.18 µm CMOS processes.
The first part presents a K-band gm-boosted Coliptts VCO. The proposed gm-boosted technique solves the problem of difficult oscillation of conventional Coliptts VCO. The obtained oscillation frequency is 25.64 GHz with a tuning range of 860 MHz at 1.2 V supply voltage. The power consumption is 3.06 mW. The measured phase noise at 1 MHz offset frequency is -108.3 dBc/Hz. The FOM (figure-of-merit) is -191.6 dBc/Hz. The chip size is 0.076 mm2. The bias level shifting technique was applied in a Ku-band VCO which solves the flicker noise from current source. The DC bias voltage of transistors is discussed, and the phase noise is then optimized. The designed Ku-band VCO was implemented in tsmcTM 0.18 µm CMOS process. The obtained oscillation frequency is 12.78 GHz with a tuning range 780 MHz at 1.0 V supply voltage. The power consumption is 5.22 mW. The measured phase noise at 1 MHz offset frequency is -110 dBc/Hz. The FOM is -185.2 dBc/Hz. The chip size is 0.33 mm2. The current-reused technique was adopted in a Ku-band gm-boosted Coliptts VCO design, this technique reduces the amount of the current and then saves the power consumption. The obtained oscillation frequency is 12.2 GHz with a tuning range 1400 MHz at 1.9 V supply voltage. The power consumption is 1.0 mW. The measured phase noise at 1 MHz offset frequency is -107.1 dBc/Hz. The FOM is -188 dBc/Hz. The chip size is 0.308 mm2.
The second part developed ILFD designs. The amplitude-redistribution technique was applied to a Ku-band ILFD design, this technique increases the signal-noise-ratio of the transistors. The Ku-band amplitude-redistribution ILFD was implemented using tsmcTM 0.18 µm CMOS process. The obtained locking range is 11.7 ~ 14.4 GHz (20%) at 0 dBm input power and 1.0 V supply voltage. The power consumption is 3.4 mW. The FOM is 6.45 %/mW. The chip size is 0.5 mm2. The Ku-band injection-enhancement injection locked frequency divider. Using conventional ILFD for fundamental substrate, then series a PMOS transistor, the input signal increases at the same power consumption, the injection efficiency increases. The last Ku-band ILFD is used injection-enhancement technique and implemented in tsmcTM 0.18 µm CMOS process. The measured locking range is 11.0 ~ 14.3 GHz (26%) at 0 dBm input power and biased at 1.0 V supply voltage. The power consumption is 1.0 mW. The FOM is 26 %/ mW. The chip size is 0.473 mm2.
關鍵字(中) ★ 壓控振盪器
★ 注入鎖定式除頻器關鍵字(英) ★ Injection Locked Frequency Divider
★ Voltage Controlled Oscillator論文目次 中文摘要.................................................Ⅰ
英文摘要.................................................Ⅲ
誌謝.....................................................Ⅴ
目錄.....................................................Ⅶ
圖目錄...................................................Ⅸ
表目錄.................................................ⅩⅡ
第一章 緒論...............................................1
1-1 研究動機..............................................1
1-2 研究成果..............................................2
1-3 章節簡述..............................................2
第二章 壓控振盪器.........................................3
2-1 壓控振盪器導論 .......................................3
2-1.1 壓控振盪器簡介......................................3
2-1.2 壓控振盪器重要規格參數..............................3
2-2 相位雜訊..............................................5
2-2.1 Lesson’s Law相位雜訊模型...........................5
2-2.2 Hajimiri 相位雜訊模型...............................8
2-3 應用於K頻段之轉導提升式考畢茲壓控振盪器..............16
2-3.1考畢茲振盪器簡介....................................16
2-3.2 轉導提升分析.......................................18
2-3.3 轉導提升式考畢茲壓控振盪器量測結果.................20
2-3.4 結果討論...........................................23
2-4 應用於Ku頻段之偏壓位移式壓控振盪器...................25
2-4.1 偏壓位移式壓控振盪器設計原理.......................25
2-4.2 偏壓位移式壓控振盪器量測結果.......................28
2-4.3 結果討論...........................................31
2-5 應用於Ku頻段電流重新使用轉導提升式考畢茲壓控振盪器...32
2-5.1 電流重新使用轉導提升式考畢茲壓控振盪器設計原理.....32
2-5.2 電流重新使用轉導提升式考畢茲壓控振盪器量測結果.....34
2-5.3 結果討論...........................................37
第三章 注入鎖定式除頻器..................................39
3-1 注入鎖定式除頻器導論 ................................39
3-1.1 注入鎖定式除頻器簡介...............................39
3-1.2 注入鎖定式除頻器之重要參數.........................40
3-1.3 注入鎖定式除頻器架構簡介...........................41
3-2 應用於Ku頻段振幅重新分佈式注入鎖定式除頻器...........43
3-2.1 振幅重新分佈式注入鎖定式除頻器設計.................43
3-2.2 振幅重新分佈式注入鎖定式除頻器量測結果.............50
3-2.3 結果討論...........................................54
3-3 應用於Ku頻段注入增強鎖定式除頻器.....................55
3-3.1 注入增強鎖定式除頻器設計...........................55
3-3.2 注入增強鎖定式除頻器量測結果.......................58
3-3.3 結果討論...........................................63
第四章 結論..............................................65
4-1 結論.................................................65
4-2 未來期許與方向.......................................66
參考文獻.................................................67
參考文獻 [1]http://WirelessMAN.org
[2]IEEE 802.16.2-2001, “IEEE Recommended Practice for Local and Metropolitan Area Networks–Coexistence of Fixed Broadband Wireless Access Systems,” Sept. 2001.
[3]IEEE 802.16-2001, “IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Apr. 2002.
[4]IEEE P802.16a-2003, “Part 16: Air Interface for Fixed Broadband Wireless Access Systems–Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz,” Jan. 2003.
[5]A. Hajimiri and T. T. Lee, “A general theory of phase noise in electrical oscillators, ” IEEE J. Solid-State Circuits, vol. 33, no.2, pp. 179-194, Feb. 1998.
[6]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
[7]Qiuting Huang, “On the Exact Design of RF oscillators,” IEEE Custom Integrated Circuits Conference, pp. 41-44, May 1998.
[8]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no.5, pp. 717-724, May 1999.
[9]D. Ham and A. Hajimiri, “Concept and method in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no.6, pp. 896-909, June 2001.
[10]X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18 µm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp.2609-2619, Dec. 2005.
[11]J. Yang, C. Y. Kim, D. W. Kim, and S. Hong, “Design of a 24-GHz CMOS VCO With an Asymmetric-Width Transformer,” IEEE Transactions On Circuit And Systems—II: Express Briefs, vol. 57, no. 3, March 2010
[12]C. K. Hsieh, K. Y. Kao, J. R. Tseng, and K. Y. Lin, “A K-Band CMOS Low Power Modified Colpitts VCO Using Transformer Feedback,” IEEE MTT-S Int. Dig.,pp.1293 – 1296, June 2009.
[13]Y. H. Kuo, J. H. Tsai, and T. W. Huang, “A 1.7-mW, 16.8% Frequency Tuning, 24-GHz Transformer-Based LC VCO using 0.18 µm CMOS Technology,” IEEE Radio Frequency Integrated Circuits Symp., pp. 79-82, June 2009.
[14]Y. Wachi, T. Nagasaku, and H. Kondoh, “A 28GHz low-phase-noise CMOS VCO using an amplitude-redistribution technique,” IEEE Int. Solid-State Circuit Conf. Dig. Tech., pp. 482-630, Feb. 2008.
[15]C. C. Li, T. P. Wang, C. C. Kuo, M. C. Chung, and H. Wang, “A 21 GHz Complementary Transformer Coupler CMOS VCO,”IEEE Microwave Wireless Component Letters, vol. 18, no. 4, pp. 278-280, April 2008.
[16]J. C. Chien and L. H. Lu, “A 32-ba uGHz rotary traveling-wave voltage controlled oscillator in 0.18-µm CMOS” IEEE Microwave Wireless Component Letters, vol. 17, no. 10, pp. 724-726, Oct. 2007.
[17]T. Song, S. Ko, D. H. Cho, H. S. Oh, C. Chung, and E. Yoon, “A 5GHz transformer-coupled CMOS VCO using bias-level shifting technique,” IEEE Radio Frequency Integrated Circuits Symp., pp. 127-130, 2004.
[18]J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-562,2000.
[19] S. L. Jang, Y. J. Song, and C. C. Liu, “A Differential Clapp-VCO in 0.13 µm CMOS Technology,” IEEE Microwave Wireless Components Letters, pp. 404 - 406, June 2009.
[20]M. T. Hsu and C. T. Chiu, “A Low Power 10 GHz Current Reused VCO Using Negative Resistance Enhancement Technique,” Asia Pacific Microwave Conference, pp. 2276 - 2279, Dec 2009.
[21]C. L. Yang and Y. C. Chiang, “Low phase-noise and low-power CMOS VCO constructed in current-reused configuration,” IEEE Microwave Wireless Components Letters, vol. 18, no. 2, pp. 136-138, Feb. 2008.
[22]B. Park, S. Lee, S. Choi, and S. Hong, “A 12-GHz fully Integrated cascade CMOS LC VCO with Q-enhancement circuit,” IEEE Microwave Wireless Components Letters, vol. 18, no. 2, pp. 133-135, Feb. 2008.
[23]Alan W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp.1933-1941, Sep. 2007.
[24]M. Demorkan, S. P. Bruss, and R. R. Spencer, “11.8-GHz CMOS VCO with 62% tuning range using switched coupled inductors,” IEEE Radio Frequency Integrated Circuits Symp., pp.401-404, June 2007.
[25]H. Wu and A. Harjimili, “A 19 GHz 0.5 mW 0.35 µm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE Int. Solid-State Circuit Confer. Dig. Tech., pp. 412-413, Feb. 2001.
[26]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, July 2004.
[27]F. Ellinger, L. C. Rodoni, and G. Sialm, “30-40 GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp.1382-1391, May 2004.
[28]J. C. Chien and L. H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balance VCO in 0.18 µm CMOS,” IEEE Int. Solid-State Circuit Confer. Dig. Tech., pp. 544-621, Feb. 2007.
[29]K. H. Tsai, L. C. Cho, J. H. Wu, and S. I. Liu, “3.5 mW W-band frequency divider with wide locking range in 90 nm CMOS technology,” IEEE Int. Solid-State Circuit Confer. Dig. Tech., pp. 466-628, Feb. 2008.
[30]B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1415-1424, Sep. 2004.
[31]S. N. Rong, A. W. L. Luong, and H. C. Luong, “0.9mW 7GHz and 1.6mW 60GHz Frequency Dividers with Locking-Range Enhancement in 0.13µm CMOS,” IEEE Int. Solid-State Circuit Confer. Dig. Tech. ,pp 96-97,May 2009.
[32]S. L. Jang, J. C. Luo, C. W. Chang, C. F. Lee, and J. F. Huang, “LC-tank colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microwave Wireless Component Letters, vol. 19, no. 2, pp. 113-115, Feb. 2009.
[33]S. L. Jang, R. K. Yang, C. W. Chang, and M. H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microwave Wireless Component Letters, vol. 19, no. 5, pp. 311-313, May. 2009.
[34]T. Shibasaki, H. Tamura, K. Kanda, H. Yamaguchi, J. Ogawa, and T. Kuroda, “20-GHz quadrature injection-locked LC dividers with enhanced locking range,” IEEE J. Solid-State Circuits, vol.43. no. 3, pp. 610-618, March. 2008.
[35]S. L. Jang, M. H. Suchen, and C. F. Lee, “Colpitts injection-locked frequency divider implemented with a 3-D helical transformer,” IEEE Microwave Wireless Component Letters, vol. 18, no. 6, pp. 410-412, June 2008.
[36]S. L. Jang and C. F. Lee, “A wide locking range LC-tank injection-locked frequency divider,” IEEE Microwave Wireless Component Letters, vol. 17, no. 8, pp. 613-615, Aug. 2007.
[37]C. F. Lee, S. L. Jang, and M. H. Juang, “A wide locking range differential colpitts injection locked frequency dividers,” IEEE Microwave Wireless Component Letters, vol. 17, no. 11, pp. 790-792, Nov. 2007.
[38]陳瑋強,“Ku/K 頻段壓控振盪器及注入鎖定除頻器暨毫米波fT-倍頻電路壓控振盪器與寬頻混頻器之研製,”碩士論文, 國立中央大學,2009。
[39]梁可駿, “以脈衝靈敏函數分析壓控振盪器之相位雜訊特性與K頻段差動低雜訊放大器之研製,”碩士論文, 國立中央大學,2007。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2010-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare