參考文獻 |
[1] Y. S. Lin and C. C. Chen, “0.18 mm 21–27 GHz CMOS UWB LNA with 9.3+1.3 dB gain and 103.9+8.1 ps groupdelay,” Electron. Lett., vol. 44, no. 1, Aug. 2008.
[2] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, Jul. 2005.
[3] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang and M. F. Chang, “K-band low-noise amplifiers using 0.18μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
[4] C. H. Doan, S. Emami, A. M. Niknejad and R. W. Brodersen, “Millimeter-Wave CMOS Design”, IEEE J. Solid-State Circuits, vol. 40, no. 1, Jan. 2005.
[5] B. Afshar and A. M. Niknejad Berkeley Wireless Research Center, Dept. UC Berkeley, “X/Ku Band CMOS LNA Design Techniques,” USA IEEE 2006 Custom Intergrated Circuits Conference.
[6] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[7] F. Ellinger, “26-42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522 – 528, Mar. 2004.
[8] R. E. Lehmann and D. D. Heston, “X-Band Monolithic Series Feedback LNA,” IEEE Tran. Microw. Theory Tech., Vol. 33, no. 12, pp. 1560 – 1566, Dec. 1985.
[9] F. Bruccoleri, E.A.M. Klumperink and B. Nauta, “Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE J. Solid-State Circuits, vol. 39, pp. 275–282, Feb. 2004.
[10] T. Song, S. Ko, D. H. Cho, H. S. Oh, C. Chung, and E. Yoon, “A 5GHz Transformer-Coupled CMOS VCO Using Bias-Level Shifting Technique,” IEEE RFIC Symp., pp. 127-130, Jun. 2004.
[11] C. R. C. De Ranter and M. S. J. Steyaert, “A 0.25μm CMOS 17 GHz VCO,” IEEE J. Solid-State Circuits, vol 23, pp. 370-371, Feb. 2001.
[12] S. Ko, J. G. Kim, T. Song, E. Yoon and S. Hong, “20 GHz Integrated CMOS Frequency Sources with a Quadrature VCO using Transformers,” IEEE RFIC Symp., pp. 269-272, Jun. 2004.
[13] T. P. Wang, R. C. Liu, H. Y. Chang, L. H. Lu, and H. Wang, “A 22 GHz Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 859–861, Dec. 2005.
[14] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp.673–675, Oct. 2005.
[15] W. L. Ng. Alan, G. C. T. Leung, K. C. Kwok, L. K. L. Lincoln, H. C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18μm CMOS,” IEEE J. Solid-State Circuits, vol 8, pp. 158-160, Feb. 2005.
[16] C. Cao, Y. Ding , X. Yang , J. J. Lin, H. T. Wu, A. K. Verma, J. Lin, F. Martin, and K. O. Kenneth, “A 24-GHz Transmitter With On-Chip Dipole Antenna in 0.13μm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 6, Jun. 2008.
[17] T. S. D. Cheung and J. R. Long, “Shielded passive devices for silicon based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1183-1200, May 2006.
[18] P. J. Riemer, J. F. Prairie, B. R. Buhrow, C. L. Chen, C. L. Keast, P. W. Wyatt, B. A. Randall, B. K. Gilbert, E. S Daniel, “Ka-Band (35 GHz) Low-noise 180nm SOI CMOS Amplifier,” IEEE International SOI Conference, pp. 125-126, Oct. 2006.
[19] H. Y. Liao, K. C. Liang, H. K. Chiou, “A Compact and Low Power Consumption K-band Differential Low Noise Amplifier Design Using Transformer Feedback Technique,”Asia-Pacific Microw. Conf., pp. 1-4, Dec. 2007.
[20] S. C. Shin, S. F. Lai, K. Y. Lin, M. D. Tsai, H. Wang, C. S. Chang, Y. C. Tsai, “18-26 GHz low-noise amplifiers using 130 and 90nm bulk CMOS technologies,” IEEE RFIC Symposium 2005, pp. 47-50, Jun. 2005.
[21] H. L. Tu, T. Y. Yang, K. H. Liang and H. K. Chiou, “A 30 GHz 10 dB low noise amplifier using standard 0.18μm CMOS Tech.,” Microw. Opt. Tech. Lett., vol. 49, no. 3, Mar. 2007, pp. 647~649.
[22] W. M. Chang, Z. H. Hsiung and C. F. Jou, “Ka-band 0.18μm CMOS low noise amplifier with 5.2 dB noise figure,” Microw. Opt. Tech. Lett., vol. 49, no. 5, May 2007, pp. 1187~1189.
[23] C. C. Chen, Y. S. Lin, J. F. Chang and J. H. Lee, “A K-Band low noise amplifier using shunt RC feedback and series inductive peaking techniques,” Microw. Opt. Tech. Lett., vol. 50, No. 5, May 2008, pp. 1148~1151.
[24] A. A. Eldek, A. Z. Elsherbeni and C. E. Smith, “Wide-band modified printed bow-tie antenna with single and dual polarization for C and X-band applications,” IEEE Trans. Antennas Propag., vol. 5, no. 9, pp3067-307, Sep. 2005.
[25] G. Y. Chen and J. S. Sun, “A printed dipole antenna with microstrip tapered balun,” Microw. Opt. Tech. Lett.,vol. 40, no. 4, pp. 344-346, Feb. 2004.
[26] C. Y. Hang, W. R. Deal,Y. Qian and T. Itoh, “High – Efficiency push-pull power amplifer integrated with Quasi-Yagi antenna,”IEEE Trans. Microw. Theory Tech, vol. 49, no. 6, pp.1155-1161,Jun. 2001.
[27] W. R. Deal, N. Kaneda, J. Sor, Y. Qian and T. Itoh, “A new quasi-Yagi antenna for planar active antenna arrays,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 6, pp.910-918, Jun. 2000.
[28] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz, “A 24 GHz High-Gian Yagi-Uda antenna array,” IEEE Trans. Antennas Propag.,vol. 52, pp. 1257-1261, May 2004.
[29] I. S. Chen, H. K. Chiou and N. W. Chen, “V-Band On Chip Diopole-Based Antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct. 2009.
[30] C. A. Balans, Antenna Theory Analysis and Design, 3rd ed. New York:Wiley, 2005.
|